The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

rlowdb is a lightweight, JSON-based database for R,
inspired by LowDB from
JavaScript. It provides a simple and efficient way to store, retrieve,
update, and delete structured data without the need for a full database
system.
You can install rlowdb from CRAN with:
install.packages("rlowdb")You can also install the development version from Github
with:
devtools::install_github("feddelegrand7/rlowdb")To start using `rlowdb``, create a new database instance by specifying a JSON file:
library(rlowdb)
db <- rlowdb$new("DB.json")The insert method takes two parameters, a
collection and a record, think of the
collection parameter as a table in the
SQL world. Think of the record parameter
as a list of names, each name/value pair representing a
specific column and it’s value.
Add records to a collection:
db$insert(
collection = "users",
record = list(id = 1, name = "Ali", age = 30)
)
db$insert(
collection = "users",
record = list(id = 2, name = "Bob", age = 25)
)
db$insert(
collection = "users",
record = list(id = 3, name = "Alice", age = 30)
)Using the transaction method, you can insert a set of
records and if an error occurs in the process, a rollback
will be triggered to restore the initial state of the database. Note
that the insertion has to be operated using a function:
db$count("users")
#> [1] 3db$transaction(function() {
db$insert("users", list(name = "Zlatan", age = 40))
db$insert("users", list(name = "Neymar", age = 28))
stop("some errors")
db$insert("users", list(name = "Ronaldo", age = 30))
})
#> Error in `value[[3L]]()`:
#> ! Transaction failed: some errorsdb$count("users")
#> [1] 3Get all stored data:
db$get_data()
#> $users
#> $users[[1]]
#> $users[[1]]$id
#> [1] 1
#>
#> $users[[1]]$name
#> [1] "Ali"
#>
#> $users[[1]]$age
#> [1] 30
#>
#>
#> $users[[2]]
#> $users[[2]]$id
#> [1] 2
#>
#> $users[[2]]$name
#> [1] "Bob"
#>
#> $users[[2]]$age
#> [1] 25
#>
#>
#> $users[[3]]
#> $users[[3]]$id
#> [1] 3
#>
#> $users[[3]]$name
#> [1] "Alice"
#>
#> $users[[3]]$age
#> [1] 30Get data from a specific collection:
db$get_data_collection("users")
#> [[1]]
#> [[1]]$id
#> [1] 1
#>
#> [[1]]$name
#> [1] "Ali"
#>
#> [[1]]$age
#> [1] 30
#>
#>
#> [[2]]
#> [[2]]$id
#> [1] 2
#>
#> [[2]]$name
#> [1] "Bob"
#>
#> [[2]]$age
#> [1] 25
#>
#>
#> [[3]]
#> [[3]]$id
#> [1] 3
#>
#> [[3]]$name
#> [1] "Alice"
#>
#> [[3]]$age
#> [1] 30Get data from a specific key:
db$get_data_key("users", "name")
#> [1] "Ali" "Bob" "Alice"Find a specific record:
db$find(collection = "users", key = "id", value = 1)
#> [[1]]
#> [[1]]$id
#> [1] 1
#>
#> [[1]]$name
#> [1] "Ali"
#>
#> [[1]]$age
#> [1] 30Modify existing records:
db$update(
collection = "users",
key = "id",
value = 1,
new_data = list(age = 31)
)
db$get_data()
#> $users
#> $users[[1]]
#> $users[[1]]$id
#> [1] 1
#>
#> $users[[1]]$name
#> [1] "Ali"
#>
#> $users[[1]]$age
#> [1] 31
#>
#>
#> $users[[2]]
#> $users[[2]]$id
#> [1] 2
#>
#> $users[[2]]$name
#> [1] "Bob"
#>
#> $users[[2]]$age
#> [1] 25
#>
#>
#> $users[[3]]
#> $users[[3]]$id
#> [1] 3
#>
#> $users[[3]]$name
#> [1] "Alice"
#>
#> $users[[3]]$age
#> [1] 30The upsert methods allows you to update a record if it
exists, otherwise, it will be inserted. Note that the collection and the
key need to exist:
db$upsert(
collection = "users",
key = "id",
value = 1,
new_data = list(age = 25)
)
db$get_data()
#> $users
#> $users[[1]]
#> $users[[1]]$id
#> [1] 1
#>
#> $users[[1]]$name
#> [1] "Ali"
#>
#> $users[[1]]$age
#> [1] 25
#>
#>
#> $users[[2]]
#> $users[[2]]$id
#> [1] 2
#>
#> $users[[2]]$name
#> [1] "Bob"
#>
#> $users[[2]]$age
#> [1] 25
#>
#>
#> $users[[3]]
#> $users[[3]]$id
#> [1] 3
#>
#> $users[[3]]$name
#> [1] "Alice"
#>
#> $users[[3]]$age
#> [1] 30db$upsert(
collection = "users",
key = "id",
value = 100,
new_data = list(age = 25)
)
db$get_data()
#> $users
#> $users[[1]]
#> $users[[1]]$id
#> [1] 1
#>
#> $users[[1]]$name
#> [1] "Ali"
#>
#> $users[[1]]$age
#> [1] 25
#>
#>
#> $users[[2]]
#> $users[[2]]$id
#> [1] 2
#>
#> $users[[2]]$name
#> [1] "Bob"
#>
#> $users[[2]]$age
#> [1] 25
#>
#>
#> $users[[3]]
#> $users[[3]]$id
#> [1] 3
#>
#> $users[[3]]$name
#> [1] "Alice"
#>
#> $users[[3]]$age
#> [1] 30
#>
#>
#> $users[[4]]
#> $users[[4]]$id
#> [1] 100
#>
#> $users[[4]]$age
#> [1] 25db$delete(collection = "users", key = "id", value = 100)
db$get_data()
#> $users
#> $users[[1]]
#> $users[[1]]$id
#> [1] 1
#>
#> $users[[1]]$name
#> [1] "Ali"
#>
#> $users[[1]]$age
#> [1] 25
#>
#>
#> $users[[2]]
#> $users[[2]]$id
#> [1] 2
#>
#> $users[[2]]$name
#> [1] "Bob"
#>
#> $users[[2]]$age
#> [1] 25
#>
#>
#> $users[[3]]
#> $users[[3]]$id
#> [1] 3
#>
#> $users[[3]]$name
#> [1] "Alice"
#>
#> $users[[3]]$age
#> [1] 30You can insert many records at once using the
buld_insert method:
db$bulk_insert("users", list(
list(id = 1, name = "Antoine", age = 52),
list(id = 2, name = "Omar", age = 23),
list(id = 3, name = "Nabil", age = 41)
))Find users older than 25:
db$query(collection = "users", condition = "age > 25")
#> [[1]]
#> [[1]]$id
#> [1] 3
#>
#> [[1]]$name
#> [1] "Alice"
#>
#> [[1]]$age
#> [1] 30
#>
#>
#> [[2]]
#> [[2]]$id
#> [1] 1
#>
#> [[2]]$name
#> [1] "Antoine"
#>
#> [[2]]$age
#> [1] 52
#>
#>
#> [[3]]
#> [[3]]$id
#> [1] 3
#>
#> [[3]]$name
#> [1] "Nabil"
#>
#> [[3]]$age
#> [1] 41Query with multiple conditions:
db$query(collection = "users", condition = "age > 20 & id > 1")
#> [[1]]
#> [[1]]$id
#> [1] 2
#>
#> [[1]]$name
#> [1] "Bob"
#>
#> [[1]]$age
#> [1] 25
#>
#>
#> [[2]]
#> [[2]]$id
#> [1] 3
#>
#> [[2]]$name
#> [1] "Alice"
#>
#> [[2]]$age
#> [1] 30
#>
#>
#> [[3]]
#> [[3]]$id
#> [1] 2
#>
#> [[3]]$name
#> [1] "Omar"
#>
#> [[3]]$age
#> [1] 23
#>
#>
#> [[4]]
#> [[4]]$id
#> [1] 3
#>
#> [[4]]$name
#> [1] "Nabil"
#>
#> [[4]]$age
#> [1] 41The filter method allows you to apply a predicate
function (a function that returns TRUE or
FALSE) in order to get a specific set of records:
db$filter("users", function(x) {
x$age > 30
})
#> [[1]]
#> [[1]]$id
#> [1] 1
#>
#> [[1]]$name
#> [1] "Antoine"
#>
#> [[1]]$age
#> [1] 52
#>
#>
#> [[2]]
#> [[2]]$id
#> [1] 3
#>
#> [[2]]$name
#> [1] "Nabil"
#>
#> [[2]]$age
#> [1] 41The search method allows you to search within
character fields a specific record. You can also use
regex:
db$search("users", "name", "^Ali", ignore.case = FALSE)
#> [[1]]
#> [[1]]$id
#> [1] 1
#>
#> [[1]]$name
#> [1] "Ali"
#>
#> [[1]]$age
#> [1] 25
#>
#>
#> [[2]]
#> [[2]]$id
#> [1] 3
#>
#> [[2]]$name
#> [1] "Alice"
#>
#> [[2]]$age
#> [1] 30db$search("users", "name", "alice", ignore.case = TRUE)
#> [[1]]
#> [[1]]$id
#> [1] 3
#>
#> [[1]]$name
#> [1] "Alice"
#>
#> [[1]]$age
#> [1] 30The list_collections method returns the names of the
collections within your DB:
db$list_collections()
#> [1] "users"Using the count method, you can get the number of
records a collection has:
db$count(collection = "users")
#> [1] 6It possible to verify if a collection, a
key or a value exists within your
DB:
db$exists_collection(collection = "users")
#> [1] TRUEdb$exists_collection(collection = "nonexistant")
#> [1] FALSEdb$exists_key(collection = "users", key = "name")
#> [1] TRUEdb$exists_value(
collection = "users",
key = "name",
value = "Alice"
)
#> [1] TRUEdb$exists_value(
collection = "users",
key = "name",
value = "nonexistant"
)
#> [1] FALSEUsing the status method, you can at each time get some
valuable information about the state of your DB:
db$status()
#> - database path: DB.json
#> - database exists: TRUE
#> - auto_commit: TRUE
#> - verbose: FALSE
#> - collections: users
#> - schemas: No schema definedIt is possible to clear a collection. This will remove
all the elements belonging to the collection but not drop the collection
it self:
db$insert(collection = "countries", record = list(id = 1, country = "Algeria", continent = "Africa"))
db$insert(collection = "countries", record = list(id = 1, country = "Germany", continent = "Europe"))
db$get_data()
#> $users
#> $users[[1]]
#> $users[[1]]$id
#> [1] 1
#>
#> $users[[1]]$name
#> [1] "Ali"
#>
#> $users[[1]]$age
#> [1] 25
#>
#>
#> $users[[2]]
#> $users[[2]]$id
#> [1] 2
#>
#> $users[[2]]$name
#> [1] "Bob"
#>
#> $users[[2]]$age
#> [1] 25
#>
#>
#> $users[[3]]
#> $users[[3]]$id
#> [1] 3
#>
#> $users[[3]]$name
#> [1] "Alice"
#>
#> $users[[3]]$age
#> [1] 30
#>
#>
#> $users[[4]]
#> $users[[4]]$id
#> [1] 1
#>
#> $users[[4]]$name
#> [1] "Antoine"
#>
#> $users[[4]]$age
#> [1] 52
#>
#>
#> $users[[5]]
#> $users[[5]]$id
#> [1] 2
#>
#> $users[[5]]$name
#> [1] "Omar"
#>
#> $users[[5]]$age
#> [1] 23
#>
#>
#> $users[[6]]
#> $users[[6]]$id
#> [1] 3
#>
#> $users[[6]]$name
#> [1] "Nabil"
#>
#> $users[[6]]$age
#> [1] 41
#>
#>
#>
#> $countries
#> $countries[[1]]
#> $countries[[1]]$id
#> [1] 1
#>
#> $countries[[1]]$country
#> [1] "Algeria"
#>
#> $countries[[1]]$continent
#> [1] "Africa"
#>
#>
#> $countries[[2]]
#> $countries[[2]]$id
#> [1] 1
#>
#> $countries[[2]]$country
#> [1] "Germany"
#>
#> $countries[[2]]$continent
#> [1] "Europe"Now, look what happened when we use the clear method on
the countries collection:
db$clear("countries")
db$get_data()
#> $users
#> $users[[1]]
#> $users[[1]]$id
#> [1] 1
#>
#> $users[[1]]$name
#> [1] "Ali"
#>
#> $users[[1]]$age
#> [1] 25
#>
#>
#> $users[[2]]
#> $users[[2]]$id
#> [1] 2
#>
#> $users[[2]]$name
#> [1] "Bob"
#>
#> $users[[2]]$age
#> [1] 25
#>
#>
#> $users[[3]]
#> $users[[3]]$id
#> [1] 3
#>
#> $users[[3]]$name
#> [1] "Alice"
#>
#> $users[[3]]$age
#> [1] 30
#>
#>
#> $users[[4]]
#> $users[[4]]$id
#> [1] 1
#>
#> $users[[4]]$name
#> [1] "Antoine"
#>
#> $users[[4]]$age
#> [1] 52
#>
#>
#> $users[[5]]
#> $users[[5]]$id
#> [1] 2
#>
#> $users[[5]]$name
#> [1] "Omar"
#>
#> $users[[5]]$age
#> [1] 23
#>
#>
#> $users[[6]]
#> $users[[6]]$id
#> [1] 3
#>
#> $users[[6]]$name
#> [1] "Nabil"
#>
#> $users[[6]]$age
#> [1] 41
#>
#>
#>
#> $countries
#> list()Using the drop method, one can drop a whole
collection:
db$drop(collection = "countries")
db$get_data()
#> $users
#> $users[[1]]
#> $users[[1]]$id
#> [1] 1
#>
#> $users[[1]]$name
#> [1] "Ali"
#>
#> $users[[1]]$age
#> [1] 25
#>
#>
#> $users[[2]]
#> $users[[2]]$id
#> [1] 2
#>
#> $users[[2]]$name
#> [1] "Bob"
#>
#> $users[[2]]$age
#> [1] 25
#>
#>
#> $users[[3]]
#> $users[[3]]$id
#> [1] 3
#>
#> $users[[3]]$name
#> [1] "Alice"
#>
#> $users[[3]]$age
#> [1] 30
#>
#>
#> $users[[4]]
#> $users[[4]]$id
#> [1] 1
#>
#> $users[[4]]$name
#> [1] "Antoine"
#>
#> $users[[4]]$age
#> [1] 52
#>
#>
#> $users[[5]]
#> $users[[5]]$id
#> [1] 2
#>
#> $users[[5]]$name
#> [1] "Omar"
#>
#> $users[[5]]$age
#> [1] 23
#>
#>
#> $users[[6]]
#> $users[[6]]$id
#> [1] 3
#>
#> $users[[6]]$name
#> [1] "Nabil"
#>
#> $users[[6]]$age
#> [1] 41Finally, drop_all will drop all the
collections within your DB:
db$drop_all()
db$get_data()
#> named list()You can create at any time a backup for your database using the
backup method:
db$backup("DB_backup.json")You can restore a backup database or any preexisting DB using the
restore method:
db$restore("DB_backup.json")rlowdb provides error handling for common issues. For
example, attempting to update a collection that does not exist will
result in an informative error:
db$update(
collection = "nonexistant",
key = "id",
value = 1,
new_data = list(age = 40)
)
#> Error in `private$.find_index_by_key()` at rlowdb/R/main.R:207:7:
#> ! Error: Collection 'nonexistant' does not exist.Please note that the ralger project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.