The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This package includes an example Recurrent Neural Network. The package is loaded using:
##
## Attaching package: 'rnn'
## The following object is masked _by_ '.GlobalEnv':
##
## int2bin
We can view the code of the main rnn()
function by
calling it without the parathesis (not printed here).
As can be seen from the above, the model relies on two other
functions that are available through the sigmoid
package.
The first function is logistic()
, which converts an
integer to its sigmoid value.
## [1] 0.9525741
The code for the sigmoid()
function is:
## function(x, k=1, x0=0)
## 1 / (1+exp( -k*(x-x0) ))
## <bytecode: 0x557bf97ce9e8>
## <environment: namespace:sigmoid>
The second function converts the sigmoid value of a number to its derivative.
## [1] 0.04517666
Finally, we can inspect this code using:
## function(x)
## x*(1-x)
## <bytecode: 0x557bf7d57f38>
## <environment: namespace:sigmoid>
An example is included in the help file.
Below is a basic function that converts integers to binary format (read left to right)
# basic conversion
i2b <- function(integer, length=8)
as.numeric(intToBits(integer))[1:length]
# apply to entire vectors
int2bin <- function(integer, length=8)
t(sapply(integer, i2b, length=length))
First we generate the data:
# create sample inputs
X1 = sample(0:127, 5000, replace=TRUE)
X2 = sample(0:127, 5000, replace=TRUE)
# create sample output
Y <- X1 + X2
# convert to binary
X1 <- int2bin(X1)
X2 <- int2bin(X2)
Y <- int2bin(Y)
# Create 3d array: dim 1: samples; dim 2: time; dim 3: variables.
X <- array( c(X1,X2), dim=c(dim(X1),2) )
Y <- array( Y, dim=c(dim(Y),1) )
This example is:
# train the model
model <- trainr(Y=Y[,dim(Y)[2]:1,,drop=F], # we inverse the time dimension
X=X[,dim(X)[2]:1,,drop=F], # we inverse the time dimension
learningrate = 0.1,
hidden_dim = 10,
batch_size = 100,
numepochs = 10)
## Trained epoch: 1 - Learning rate: 0.1
## Epoch error: 3.99023495317551
## Trained epoch: 2 - Learning rate: 0.1
## Epoch error: 3.86768251716534
## Trained epoch: 3 - Learning rate: 0.1
## Epoch error: 3.74153792043825
## Trained epoch: 4 - Learning rate: 0.1
## Epoch error: 3.69369796139338
## Trained epoch: 5 - Learning rate: 0.1
## Epoch error: 3.67351064550201
## Trained epoch: 6 - Learning rate: 0.1
## Epoch error: 3.6481805596686
## Trained epoch: 7 - Learning rate: 0.1
## Epoch error: 3.62138148801879
## Trained epoch: 8 - Learning rate: 0.1
## Epoch error: 3.61217609782397
## Trained epoch: 9 - Learning rate: 0.1
## Epoch error: 3.60556692236638
## Trained epoch: 10 - Learning rate: 0.1
## Epoch error: 3.6011780462736
See the evolution of the error over different epochs:
Now create testing data
# create test inputs
A1 = int2bin( sample(0:127, 7000, replace=TRUE) )
A2 = int2bin( sample(0:127, 7000, replace=TRUE) )
# create 3d array: dim 1: samples; dim 2: time; dim 3: variables
A <- array( c(A1,A2), dim=c(dim(A1),2) )
Predict based on testing data.
Define basic functions to convert binary to integer
b2i <- function(binary)
packBits(as.raw(c(binary, rep(0, 32-length(binary) ))), 'integer')
bin2int <- function(binary){
binary <- round(binary)
length <- dim(binary)[2] # determine length of binary representation
apply(binary, 1, b2i) } # apply to full matrix
Test prediction against true values
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.