The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Robust Methods for Compositional Data
using robCompositions
data(expenditures)
p1 <- pcaCoDa(expenditures)
plot(p1)
The package has dependencies on
R (>= 2.10), utils, robustbase, rrcov, car (>= 2.0-0), MASS, pls
Installion of robCompositions
is really easy for
registered users (when the R-tools are installed). Just use
library(devtools)
install_github("robCompositions", "matthias-da")
data(expenditures)
expenditures[1,3]
expenditures[1,3] <- NA
impKNNa(expenditures)$xImp[1,3]
data(expenditures)
x <- expenditures
x[1,3]
x[1,3] <- NA
xi <- impCoda(x)$xImp
xi[1,3]
s1 <- sum(x[1,-3])
impS <- sum(xi[1,-3])
xi[,3] * s1/impS
xi <- impKNNa(expenditures)
xi
summary(xi)
plot(xi, which=1)
plot(xi, which=2)
plot(xi, which=3)
data(expenditures)
p1 <- pcaCoDa(expenditures)
p1
plot(p1)
data(expenditures)
oD <- outCoDa(expenditures)
oD
plot(oD)
data(arcticLake)
x <- arcticLake
x.alr <- addLR(x, 2)
y <- addLRinv(x.alr)
addLRinv(addLR(x, 3))
data(expenditures)
x <- expenditures
y <- addLRinv(addLR(x, 5))
head(x)
head(y)
addLRinv(x.alr, ivar=2, useClassInfo=FALSE)
data(expenditures)
eclr <- cenLR(expenditures)
inveclr <- cenLRinv(eclr)
head(expenditures)
head(inveclr)
head(cenLRinv(eclr$x.clr))
require(MASS)
Sigma <- matrix(c(5.05,4.95,4.95,5.05), ncol=2, byrow=TRUE)
z <- isomLRinv(mvrnorm(100, mu=c(0,2), Sigma=Sigma))
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.