The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

rotor

Lifecycle: maturing CRAN status

rotor provides a cross platform R reimagination of logrotate. It is a companion package to the logging package lgr. In contrast to logrotate, rotor relies solely on information encoded in a suffixes of file names for conditionally creating backups (i.e. a timestamp or index). It therefore also works with backups created by other tools, as long as the filename has a format that rotor can understand.

rotate(), rotate_date(), and rotate_time() move a file and insert a suffix (either an integer or a timestamp) into the filename. In addition, they create an empty file in place of the original one. This is useful for log rotation. backup(), backup_date() and backup_time() do the same but keep the original file.

rotor also includes utility functions for finding and examining the backups of a file: list_backups(), backup_info(), n_backups, newest_backup(), oldest_backup(). See the function reference for details.

Installation

You can install the released version of rotor from CRAN with:

install.packages("rotor")

And the development version from GitHub with:

# install.packages("remotes")
remotes::install_github("s-fleck/rotor")

Example

First we create a temporary directory for the files created by the code examples

library(rotor)

# create a directory
td <- file.path(tempdir(), "rotor")
dir.create(td, recursive = TRUE)

# create an example logfile
tf <- file.path(td, "mylogfile.log")
writeLines("An important message", tf)

Indexed backups

backup() makes a copy of a file and inserts an index between the filename and the file extension. The file with the index 1 is always the most recently made backup.

backup(tf)

# backup and rotate also support compression
backup(tf, compression = TRUE) 

# display backups of a file
list_backups(tf)  
#> [1] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.1.log.zip"
#> [2] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.2.log"

rotate() also backs up a file, but replaces the original file with an empty one.

rotate(tf)
list_backups(tf)
#> [1] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.1.log"    
#> [2] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.2.log.zip"
#> [3] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.3.log"

# the original file is now empty
readLines(tf)
#> character(0)

# its content was moved to the first backup
readLines(list_backups(tf)[[1]])
#> [1] "An important message"

# we can now safely write to the original file
writeLines("another important message", tf)

The max_backups parameter limits the maximum number of backups rotor will keep of a file. Notice how the zipped backup we created above moves to index 4 as we create two new backups.

backup(tf, max_backups = 4)
backup(tf, max_backups = 4)

list_backups(tf)
#> [1] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.1.log"    
#> [2] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.2.log"    
#> [3] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.3.log"    
#> [4] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.4.log.zip"

We can also use prune_backups() to delete old backups. Other than ensuring that no new backups is created, it works identically to using backup() with the max_backups parameter. By setting it to 0, we delete all backups.

prune_backups(tf, max_backups = 0)

Timestamped backups

rotor can also create timestamped backups. backup_date() creates uses a Date (yyyy-mm-dd) timestamp, backup_time() uses a full datetime-stamp by default (yyyy-mm-dd--hh-mm-ss). The format of the timestamp can be modified with a subset of the formatting tokens understood by strftime() (within certain restrictions). Backups created with both functions are compatible with each other (but not with those created with backup_index()).

# be default backup_date() only makes a backup if the last backups is younger
# than 1 day, so we set `age` to -1 for this example
backup_date(tf, age = -1)  
backup_date(tf, format = "%Y-%m", age = -1)
backup_time(tf)
backup_time(tf, format = "%Y-%m-%d_%H-%M-%S")  # Python logging
backup_time(tf, format = "%Y%m%dT%H%M%S")  # ISO 8601 compatible

backup_info(tf)
#>                                                                                           path
#> 1 C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.2022-09-02--13-25-45.log
#> 3  C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.2022-09-02_13-25-45.log
#> 5      C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.20220902T132545.log
#> 2           C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.2022-09-02.log
#> 4              C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/rotor/mylogfile.2022-09.log
#>        name                  sfx ext size isdir mode               mtime
#> 1 mylogfile 2022-09-02--13-25-45 log   27 FALSE  666 2022-09-02 13:25:45
#> 3 mylogfile  2022-09-02_13-25-45 log   27 FALSE  666 2022-09-02 13:25:45
#> 5 mylogfile      20220902T132545 log   27 FALSE  666 2022-09-02 13:25:45
#> 2 mylogfile           2022-09-02 log   27 FALSE  666 2022-09-02 13:25:45
#> 4 mylogfile              2022-09 log   27 FALSE  666 2022-09-02 13:25:45
#>                 ctime               atime exe           timestamp
#> 1 2022-09-02 13:25:45 2022-09-02 13:25:45  no 2022-09-02 13:25:45
#> 3 2022-09-02 13:25:45 2022-09-02 13:25:45  no 2022-09-02 13:25:45
#> 5 2022-09-02 13:25:45 2022-09-02 13:25:45  no 2022-09-02 13:25:45
#> 2 2022-09-02 13:25:45 2022-09-02 13:25:45  no 2022-09-02 00:00:00
#> 4 2022-09-02 13:25:45 2022-09-02 13:25:45  no 2022-09-01 00:00:00

If we examine the “timestamp” column in the example above, we see that missing date information is always interpreted as the start of the period; i.e. so "2019-01" is equivalent to "2019-01-01--00--00--00" for all intents and purposes.

prune_backups(tf, max_backups = 0)  # cleanup
list_backups(tf)
#> character(0)

Besides passing a total number of backups to keep, max_backups can also be a period or a date / datetime for timestamped backups.

# keep all backups younger than one year
prune_backups(tf, "1 year") 
  
# keep all backups from April 4th, 2018 and onwards
prune_backups(tf, "2018-04-01")  

Cache

rotor also provides a simple on-disk key-value store that can be pruned by size, age or number of files.

cache <- Cache$new(file.path(tempdir(), "cache-test"), hashfun = digest::digest)
#> creating directory 'C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/cache-test'
key1 <- cache$push(iris)
key2 <- cache$push(cars)
key3 <- cache$push(mtcars)

cache$files$path
#> [1] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/cache-test/d3c5d071001b61a9f6131d3004fd0988"
#> [2] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/cache-test/f98a59010652c8e1ee062ed4c43f648e"
#> [3] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/cache-test/a63c70e73b58d0823ab3bcbd3b543d6f"

head(cache$read(key1))
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa
#> 4          4.6         3.1          1.5         0.2  setosa
#> 5          5.0         3.6          1.4         0.2  setosa
#> 6          5.4         3.9          1.7         0.4  setosa

cache$prune(max_files = 1)
cache$files$path
#> [1] "C:/Users/STEFAN~1.FLE/AppData/Local/Temp/RtmpYZSExE/cache-test/a63c70e73b58d0823ab3bcbd3b543d6f"
cache$purge()  # deletes all cached files
cache$destroy()  # deletes the cache directory

Dependencies

rotor’s dependencies are intentionally kept slim. It only comes with two non-base dependencies:

Both packages have no transitive dependencies (i.e they do not depend on anything outside of base R)

Optional dependencies:

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.