The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Tabulation Concepts

Adrian Waddell

6/12/2020

tabulation_concepts.R

Introduction

In this vignette we will introduce some theory behind using layouts for table creation. Much of the theory also holds true when using other table packages. For this vignette we will use the following packages:

library(dplyr)
library(tibble)
library(rtables)

tabulation_concepts.R

The data we use is the following, created with random number generators:

add_subgroup <- function(x) paste0(tolower(x), sample(1:3, length(x), TRUE))

set.seed(1)

df <- tibble(
  x = rnorm(100),
  c1 = factor(sample(c("A", "B", "C"), 100, replace = TRUE), levels = c("A", "B", "C")),
  r1 = factor(sample(c("U", "V", "W"), 100, replace = TRUE), levels = c("U", "V", "W"))
) %>%
  mutate(
    c2 = add_subgroup(c1),
    r2 = add_subgroup(r1),
    y = as.numeric(2 * as.numeric(c1) - 3 * as.numeric(r1))
  ) %>%
  select(c1, c2, r1, r2, x, y)

df
# # A tibble: 100 × 6
#    c1    c2    r1    r2         x     y
#    <fct> <chr> <fct> <chr>  <dbl> <dbl>
#  1 B     b2    U     u3    -0.626     1
#  2 A     a3    V     v2     0.184    -4
#  3 B     b1    V     v2    -0.836    -2
#  4 B     b3    V     v2     1.60     -2
#  5 B     b1    U     u1     0.330     1
#  6 C     c1    U     u3    -0.820     3
#  7 A     a3    U     u3     0.487    -1
#  8 B     b1    U     u3     0.738     1
#  9 C     c3    V     v2     0.576     0
# 10 C     c3    U     u2    -0.305     3
# # ℹ 90 more rows

tabulation_concepts.R

Building A Table Row By Row

Let’s look at a table that has 3 columns and 3 rows. Each row represents a different analysis (functions foo, bar, zoo that return an rcell() object):

                     A         B         C
------------------------------------------------
foo_label        foo(df_A)  foo(df_B)  foo(df_C)
bar_label        bar(df_A)  bar(df_B)  bar(df_C)
zoo_label        zoo(df_A)  zoo(df_B)  zoo(df_C)

The data passed to the analysis functions are a subset defined by the respective column and:

df_A <- df %>% filter(c1 == "A")
df_B <- df %>% filter(c1 == "B")
df_C <- df %>% filter(c1 == "C")

tabulation_concepts.R

Let’s do this on the concrete data with analyze():

foo <- prod
bar <- sum
zoo <- mean

lyt <- basic_table() %>%
  split_cols_by("c1") %>%
  analyze("x", function(df) foo(df$x), var_labels = "foo label", format = "xx.xx") %>%
  analyze("x", function(df) bar(df$x), var_labels = "bar label", format = "xx.xx") %>%
  analyze("x", function(df) zoo(df$x), var_labels = "zoo label", format = "xx.xx")

tbl <- build_table(lyt, df)
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: root
tbl
#                A       B       C  
# ——————————————————————————————————
# foo label                         
#   foo label   0.00   -0.00   -0.00
# bar label                         
#   bar label   1.87   4.37    4.64 
# zoo label                         
#   zoo label   0.05   0.13    0.18

tabulation_concepts.R

or if we wanted the x variable instead of the data frame:

                     A         B         C
------------------------------------------------
foo_label        foo(x_A)  foo(x_B)  foo(x_C)
bar_label        bar(x_A)  bar(x_B)  bar(x_C)
zoo_label        zoo(x_A)  zoo(x_B)  zoo(x_C)

where:

x_A <- df_A$x
x_B <- df_B$x
x_C <- df_C$x

tabulation_concepts.R

The function passed to afun is evaluated using argument matching. If afun has an argument x the analysis variable specified in vars in analyze() is passed to the function, and if afun has an argument df then a subset of the dataset is passed to afun:

lyt2 <- basic_table() %>%
  split_cols_by("c1") %>%
  analyze("x", foo, var_labels = "foo label", format = "xx.xx") %>%
  analyze("x", bar, var_labels = "bar label", format = "xx.xx") %>%
  analyze("x", zoo, var_labels = "zoo label", format = "xx.xx")

tbl2 <- build_table(lyt2, df)
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: root
tbl2
#              A       B       C  
# ————————————————————————————————
# foo label                       
#   foo       0.00   -0.00   -0.00
# bar label                       
#   bar       1.87   4.37    4.64 
# zoo label                       
#   zoo       0.05   0.13    0.18

tabulation_concepts.R

Note that it is also possible that a function returns multiple rows with in_rows():

lyt3 <- basic_table() %>%
  split_cols_by("c1") %>%
  analyze("x", function(x) {
    in_rows(
      "row 1" = rcell(mean(x), format = "xx.xx"),
      "row 2" = rcell(sd(x), format = "xx.xxx")
    )
  }, var_labels = "foo label") %>%
  analyze("x", function(x) {
    in_rows(
      "more rows 1" = rcell(median(x), format = "xx.x"),
      "even more rows 1" = rcell(IQR(x), format = "xx.xx")
    )
  }, var_labels = "bar label", format = "xx.xx")

tbl3 <- build_table(lyt3, df)
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: root
tbl3
#                        A       B       C  
# ——————————————————————————————————————————
# foo label                                 
#   row 1              0.05    0.13    0.18 
#   row 2              0.985   0.815   0.890
# bar label                                 
#   more rows 1        -0.0     0.2     0.3 
#   even more rows 1   1.20    1.15    1.16

tabulation_concepts.R

This is how we recommend you specify the row names explicitly.

Tabulation With Row Structure

Let’s say we would like to create the following table:

            A         B         C
--------------------------------------
U        foo(df_UA)  foo(df_UB)  foo(df_UC)
V        foo(df_VA)  foo(df_VB)  foo(df_VC)
W        foo(df_WA)  foo(df_WB)  foo(df_WC)

where df_* are subsets of df as follows:

df_UA <- df %>% filter(r1 == "U", c1 == "A")
df_VA <- df %>% filter(r1 == "V", c1 == "A")
df_WA <- df %>% filter(r1 == "W", c1 == "A")
df_UB <- df %>% filter(r1 == "U", c1 == "B")
df_VB <- df %>% filter(r1 == "V", c1 == "B")
df_WB <- df %>% filter(r1 == "W", c1 == "C")
df_UC <- df %>% filter(r1 == "U", c1 == "C")
df_VC <- df %>% filter(r1 == "V", c1 == "C")
df_WC <- df %>% filter(r1 == "W", c1 == "C")

tabulation_concepts.R

further note that df_* are of the same class as df, i.e. tibbles. Hence foo aggregates the subset of our data to a cell value.

Given a function foo (ignore the ... for now):

foo <- function(df, labelstr = "", ...) {
  paste(dim(df), collapse = " x ")
}

tabulation_concepts.R

we can start calculating the cell values individually:

foo(df_UA)
# [1] "17 x 6"
foo(df_VA)
# [1] "9 x 6"
foo(df_WA)
# [1] "14 x 6"
foo(df_UB)
# [1] "13 x 6"
foo(df_VB)
# [1] "15 x 6"
foo(df_WB)
# [1] "11 x 6"
foo(df_UC)
# [1] "10 x 6"
foo(df_VC)
# [1] "5 x 6"
foo(df_WC)
# [1] "11 x 6"

tabulation_concepts.R

Now we are still missing the table structure:

matrix(
  list(
    foo(df_UA),
    foo(df_VA),
    foo(df_WA),
    foo(df_UB),
    foo(df_VB),
    foo(df_WB),
    foo(df_UC),
    foo(df_VC),
    foo(df_WC)
  ),
  byrow = FALSE, ncol = 3
)
#      [,1]     [,2]     [,3]    
# [1,] "17 x 6" "13 x 6" "10 x 6"
# [2,] "9 x 6"  "15 x 6" "5 x 6" 
# [3,] "14 x 6" "11 x 6" "11 x 6"

tabulation_concepts.R

In rtables this type of tabulation is done with layouts:

lyt4 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  analyze("x", foo)

tbl4 <- build_table(lyt4, df)
tbl4
#           A        B        C   
# ————————————————————————————————
# U                               
#   foo   17 x 6   13 x 6   10 x 6
# V                               
#   foo   9 x 6    15 x 6   5 x 6 
# W                               
#   foo   14 x 6   6 x 6    11 x 6

tabulation_concepts.R

or if we would not want to see the foo label we would have to use:

lyt5 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  summarize_row_groups(cfun = foo, format = "xx")

tbl5 <- build_table(lyt5, df)
tbl5
#      A        B        C   
# ———————————————————————————
#    17 x 6   13 x 6   10 x 6
#    9 x 6    15 x 6   5 x 6 
#    14 x 6   6 x 6    11 x 6

tabulation_concepts.R

but now the row labels have disappeared. This is because cfun needs to define its row label. So let’s redefine foo:

foo <- function(df, labelstr) {
  rcell(paste(dim(df), collapse = " x "), format = "xx", label = labelstr)
}

lyt6 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  summarize_row_groups(cfun = foo)

tbl6 <- build_table(lyt6, df)
tbl6
#       A        B        C   
# ————————————————————————————
# U   17 x 6   13 x 6   10 x 6
# V   9 x 6    15 x 6   5 x 6 
# W   14 x 6   6 x 6    11 x 6

tabulation_concepts.R

Calculating the Mean

Now let’s calculate the mean of df$y for pattern I:

foo <- function(df, labelstr) {
  rcell(mean(df$y), label = labelstr, format = "xx.xx")
}

lyt7 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  summarize_row_groups(cfun = foo)

tbl7 <- build_table(lyt7, df)
tbl7
#       A       B       C  
# —————————————————————————
# U   -1.00   1.00    3.00 
# V   -4.00   -2.00   0.00 
# W   -7.00   -5.00   -3.00

tabulation_concepts.R

Note that foo has the variable information hard-encoded in the function body. Let’s try some alternatives returning to analyze():

lyt8 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  analyze("y", afun = mean)

tbl8 <- build_table(lyt8, df)
tbl8
#          A    B    C 
# —————————————————————
# U                    
#   mean   -1   1    3 
# V                    
#   mean   -4   -2   0 
# W                    
#   mean   -7   -5   -3

tabulation_concepts.R

Note that the subset of the y variable is passed as the x argument to mean(). We could also get the data.frame instead of the variable:

lyt9 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  analyze("y", afun = function(df) mean(df$y))

tbl9 <- build_table(lyt9, df)
tbl9
#       A    B    C 
# ——————————————————
# U                 
#   y   -1   1    3 
# V                 
#   y   -4   -2   0 
# W                 
#   y   -7   -5   -3

tabulation_concepts.R

which is in contrast to:

lyt10 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  analyze("y", afun = function(x) mean(x))

tbl10 <- build_table(lyt10, df)
tbl10
#       A    B    C 
# ——————————————————
# U                 
#   y   -1   1    3 
# V                 
#   y   -4   -2   0 
# W                 
#   y   -7   -5   -3

tabulation_concepts.R

where the function receives the subset of y.

Group Summaries

Pattern I is an interesting one as we can add more row structure (with further splits). Consider the following table:

            A         B         C
--------------------------------------
U
  u1     foo(<>)  foo(<>)  foo(<>)
  u2     foo(<>)  foo(<>)  foo(<>)
  u3     foo(<>)  foo(<>)  foo(<>)
V
  v1     foo(<>)  foo(<>)  foo(<>)
  v2     foo(<>)  foo(<>)  foo(<>)
  v3     foo(<>)  foo(<>)  foo(<>)
W
  w1     foo(<>)  foo(<>)  foo(<>)
  w2     foo(<>)  foo(<>)  foo(<>)
  w3     foo(<>)  foo(<>)  foo(<>)

where <> represents the data that is represented by the cell. So for the cell U > u1, A we would have the subset:

df %>%
  filter(r1 == "U", r2 == "u1", c1 == "A")
# # A tibble: 2 × 6
#   c1    c2    r1    r2        x     y
#   <fct> <chr> <fct> <chr> <dbl> <dbl>
# 1 A     a2    U     u1    1.12     -1
# 2 A     a1    U     u1    0.594    -1

tabulation_concepts.R

and so on. We can get this table as follows:

lyt11 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  split_rows_by("r2") %>%
  summarize_row_groups(cfun = function(df, labelstr) {
    rcell(mean(df$x), format = "xx.xx", label = paste("mean x for", labelstr))
  })

tbl11 <- build_table(lyt11, df)
tbl11
#                     A       B       C  
# ———————————————————————————————————————
# U                                      
#   mean x for u3   -0.04   0.36    -0.25
#   mean x for u1   0.86    0.32     NA  
#   mean x for u2   -0.28   0.38    0.08 
# V                                      
#   mean x for v2   0.01    0.55    0.60 
#   mean x for v3   -0.03   -0.30   1.06 
#   mean x for v1   0.56    -0.27   -0.54
# W                                      
#   mean x for w1   -0.58   0.42    0.67 
#   mean x for w3   0.56    0.69    -0.39
#   mean x for w2   -1.99   -0.10   0.53

tabulation_concepts.R

or, if we wanted to calculate two summaries per row split:

s_mean_sd <- function(x) {
  in_rows("mean (sd)" = rcell(c(mean(x), sd(x)), format = "xx.xx (xx.xx)"))
}

s_range <- function(x) {
  in_rows("range" = rcell(range(x), format = "xx.xx - xx.xx"))
}

lyt12 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  split_rows_by("r2") %>%
  analyze("x", s_mean_sd, show_labels = "hidden") %>%
  analyze("x", s_range, show_labels = "hidden")

tbl12 <- build_table(lyt12, df)
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[U]->r2[u3]
# Warning in min(x): no non-missing arguments to min; returning Inf
# Warning in max(x): no non-missing arguments to max; returning -Inf
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[U]->r2[u1]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[U]->r2[u2]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[V]->r2[v2]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[V]->r2[v3]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[V]->r2[v1]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[W]->r2[w1]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[W]->r2[w3]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[W]->r2[w2]
tbl12
#                       A              B              C      
# ———————————————————————————————————————————————————————————
# U                                                          
#   u3                                                       
#     mean (sd)   -0.04 (1.18)    0.36 (1.41)    -0.25 (0.72)
#     range       -1.80 - 1.47    -1.28 - 2.40   -0.82 - 0.56
#   u1                                                       
#     mean (sd)    0.86 (0.38)    0.32 (0.51)         NA     
#     range        0.59 - 1.12    -0.48 - 0.94    Inf - -Inf 
#   u2                                                       
#     mean (sd)   -0.28 (0.96)    0.38 (0.67)    0.08 (0.91) 
#     range       -1.52 - 1.43    -0.39 - 0.82   -0.93 - 1.51
# V                                                          
#   v2                                                       
#     mean (sd)    0.01 (0.25)    0.55 (1.14)    0.60 (0.03) 
#     range       -0.16 - 0.18    -0.84 - 1.60   0.58 - 0.62 
#   v3                                                       
#     mean (sd)   -0.03 (0.37)    -0.30 (0.36)    1.06 (NA)  
#     range       -0.41 - 0.33    -0.62 - 0.03   1.06 - 1.06 
#   v1                                                       
#     mean (sd)    0.56 (1.10)    -0.27 (0.73)   -0.54 (1.18)
#     range       -0.16 - 2.17    -1.22 - 0.59   -1.38 - 0.29
# W                                                          
#   w1                                                       
#     mean (sd)   -0.58 (0.85)     0.42 (NA)     0.67 (0.39) 
#     range       -1.25 - 0.61    0.42 - 0.42    0.37 - 1.21 
#   w3                                                       
#     mean (sd)    0.56 (0.85)     0.69 (NA)     -0.39 (1.68)
#     range       -0.71 - 1.98    0.69 - 0.69    -2.21 - 1.10
#   w2                                                       
#     mean (sd)    -1.99 (NA)     -0.10 (0.47)   0.53 (0.60) 
#     range       -1.99 - -1.99   -0.61 - 0.39   -0.10 - 1.16

tabulation_concepts.R

Which has the following structure:

                   A              B              C
---------------------------------------------------------
U
  u1
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  u2
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  u3
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
V
  v1
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  v2
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  v3
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
W
  w1
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  w2
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  w3
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)

The rows U, u1, u2, …, W, w1, w2, w3 are label rows and the other rows (with mean_sd and range) are data rows. Currently we do not have content rows in the table. Content rows summarize the data defined by their splitting (i.e. V > v1, B). So if we wanted to add content rows at the r2 split level then we would get:

                   A              B              C
---------------------------------------------------------
U
  u1          s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  u2          s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  u3          s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
V
  v1          s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  v2          s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  v3          s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
W
  w1          s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  w2          s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  w3          s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)

where s_cfun_2 is the content function and either returns one row via rcell() or multiple rows via in_rows(). The data represented by <> for the content rows is same data as for it’s descendant, i.e. for the U > u1, A content row cell it is df %>% filter(r1 == "U", r2 == "u1", c1 == "A"). Note that content functions cfun operate only on data frames and not on vectors/variables so they must take the df argument. Further, a cfun must also have the labelstr argument which is the split level. This way, the cfun can define its own row name. In order to get the table above we can use the layout framework as follows:

s_mean_sd <- function(x) {
  in_rows("mean (sd)" = rcell(c(mean(x), sd(x)), format = "xx.xx (xx.xx)"))
}

s_range <- function(x) {
  in_rows("range" = rcell(range(x), format = "xx.xx - xx.xx"))
}

s_cfun_2 <- function(df, labelstr) {
  rcell(nrow(df), format = "xx", label = paste(labelstr, "(n)"))
}

lyt13 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  split_rows_by("r2") %>%
  summarize_row_groups(cfun = s_cfun_2) %>%
  analyze("x", s_mean_sd, show_labels = "hidden") %>%
  analyze("x", s_range, show_labels = "hidden")

tbl13 <- build_table(lyt13, df)
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[U]->r2[u3]
# Warning in min(x): no non-missing arguments to min; returning Inf
# Warning in max(x): no non-missing arguments to max; returning -Inf
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[U]->r2[u1]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[U]->r2[u2]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[V]->r2[v2]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[V]->r2[v3]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[V]->r2[v1]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[W]->r2[w1]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[W]->r2[w3]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[W]->r2[w2]
tbl13
#                       A              B              C      
# ———————————————————————————————————————————————————————————
# U                                                          
#   u3 (n)              6              5              3      
#     mean (sd)   -0.04 (1.18)    0.36 (1.41)    -0.25 (0.72)
#     range       -1.80 - 1.47    -1.28 - 2.40   -0.82 - 0.56
#   u1 (n)              2              5              0      
#     mean (sd)    0.86 (0.38)    0.32 (0.51)         NA     
#     range        0.59 - 1.12    -0.48 - 0.94    Inf - -Inf 
#   u2 (n)              9              3              7      
#     mean (sd)   -0.28 (0.96)    0.38 (0.67)    0.08 (0.91) 
#     range       -1.52 - 1.43    -0.39 - 0.82   -0.93 - 1.51
# V                                                          
#   v2 (n)              2              4              2      
#     mean (sd)    0.01 (0.25)    0.55 (1.14)    0.60 (0.03) 
#     range       -0.16 - 0.18    -0.84 - 1.60   0.58 - 0.62 
#   v3 (n)              3              4              1      
#     mean (sd)   -0.03 (0.37)    -0.30 (0.36)    1.06 (NA)  
#     range       -0.41 - 0.33    -0.62 - 0.03   1.06 - 1.06 
#   v1 (n)              4              7              2      
#     mean (sd)    0.56 (1.10)    -0.27 (0.73)   -0.54 (1.18)
#     range       -0.16 - 2.17    -1.22 - 0.59   -1.38 - 0.29
# W                                                          
#   w1 (n)              4              1              4      
#     mean (sd)   -0.58 (0.85)     0.42 (NA)     0.67 (0.39) 
#     range       -1.25 - 0.61    0.42 - 0.42    0.37 - 1.21 
#   w3 (n)              9              1              3      
#     mean (sd)    0.56 (0.85)     0.69 (NA)     -0.39 (1.68)
#     range       -0.71 - 1.98    0.69 - 0.69    -2.21 - 1.10
#   w2 (n)              1              4              4      
#     mean (sd)    -1.99 (NA)     -0.10 (0.47)   0.53 (0.60) 
#     range       -1.99 - -1.99   -0.61 - 0.39   -0.10 - 1.16

tabulation_concepts.R

In the same manner, if we want content rows for the r1 split we can do it at as follows:

lyt14 <- basic_table() %>%
  split_cols_by("c1") %>%
  split_rows_by("r1") %>%
  summarize_row_groups(cfun = s_cfun_2) %>%
  split_rows_by("r2") %>%
  summarize_row_groups(cfun = s_cfun_2) %>%
  analyze("x", s_mean_sd, show_labels = "hidden") %>%
  analyze("x", s_range, show_labels = "hidden")

tbl14 <- build_table(lyt14, df)
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[U]->r2[u3]
# Warning in min(x): no non-missing arguments to min; returning Inf
# Warning in max(x): no non-missing arguments to max; returning -Inf
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[U]->r2[u1]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[U]->r2[u2]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[V]->r2[v2]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[V]->r2[v3]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[V]->r2[v1]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[W]->r2[w1]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[W]->r2[w3]
# Warning: Non-unique sibling analysis table names. Using Labels instead. Use the table_names argument to analyze to avoid this when analyzing the same variable multiple times.
#   occured at (row) path: r1[W]->r2[w2]
tbl14
#                       A              B              C      
# ———————————————————————————————————————————————————————————
# U (n)                17              13             10     
#   u3 (n)              6              5              3      
#     mean (sd)   -0.04 (1.18)    0.36 (1.41)    -0.25 (0.72)
#     range       -1.80 - 1.47    -1.28 - 2.40   -0.82 - 0.56
#   u1 (n)              2              5              0      
#     mean (sd)    0.86 (0.38)    0.32 (0.51)         NA     
#     range        0.59 - 1.12    -0.48 - 0.94    Inf - -Inf 
#   u2 (n)              9              3              7      
#     mean (sd)   -0.28 (0.96)    0.38 (0.67)    0.08 (0.91) 
#     range       -1.52 - 1.43    -0.39 - 0.82   -0.93 - 1.51
# V (n)                 9              15             5      
#   v2 (n)              2              4              2      
#     mean (sd)    0.01 (0.25)    0.55 (1.14)    0.60 (0.03) 
#     range       -0.16 - 0.18    -0.84 - 1.60   0.58 - 0.62 
#   v3 (n)              3              4              1      
#     mean (sd)   -0.03 (0.37)    -0.30 (0.36)    1.06 (NA)  
#     range       -0.41 - 0.33    -0.62 - 0.03   1.06 - 1.06 
#   v1 (n)              4              7              2      
#     mean (sd)    0.56 (1.10)    -0.27 (0.73)   -0.54 (1.18)
#     range       -0.16 - 2.17    -1.22 - 0.59   -1.38 - 0.29
# W (n)                14              6              11     
#   w1 (n)              4              1              4      
#     mean (sd)   -0.58 (0.85)     0.42 (NA)     0.67 (0.39) 
#     range       -1.25 - 0.61    0.42 - 0.42    0.37 - 1.21 
#   w3 (n)              9              1              3      
#     mean (sd)    0.56 (0.85)     0.69 (NA)     -0.39 (1.68)
#     range       -0.71 - 1.98    0.69 - 0.69    -2.21 - 1.10
#   w2 (n)              1              4              4      
#     mean (sd)    -1.99 (NA)     -0.10 (0.47)   0.53 (0.60) 
#     range       -1.99 - -1.99   -0.61 - 0.39   -0.10 - 1.16

tabulation_concepts.R

In pagination, content rows and label rows get repeated if a page is split in a descendant of a content row. So, for example, if we were to split the following table at ***:

                   A              B              C
---------------------------------------------------------
U
  u1 (n)      s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
***
     range    s_range(<>)    s_range(<>)    s_range(<>)
  u2 (n)      s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)

Then we would get the following two tables:

                   A              B              C
---------------------------------------------------------
U
  u1 (n)      s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)

and

                   A              B              C
---------------------------------------------------------
U
  u1 (n)      s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)
  u2 (n)      s_cfun_2(<>)   s_cfun_2(<>)   s_cfun_2(<>)
     mean_sd  s_mean_sd(<>)  s_mean_sd(<>)  s_mean_sd(<>)
     range    s_range(<>)    s_range(<>)    s_range(<>)

Pattern III

Let’s consider the following tabulation pattern:

                     A         B         C
------------------------------------------------
label 1        foo(x_A)  bar(x_B)  zoo(x_C)
label 2        foo(x_A)  bar(x_B)  zoo(x_C)
label 3        foo(x_A)  bar(x_B)  zoo(x_C)

We will discuss that in a future release of rtables.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.