The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

s3

CRAN status R-CMD-check

s3 is an R package designed to download files from AWS S3. Files are downloaded to the R user data directory (i.e., tools::R_user_dir("s3", "data")) so they can be cached across all of an R user’s sessions and projects. Specify an alternative download location by setting the R_USER_DATA_DIR environment variable (see ?tools::R_user_dir).

A file is specified from AWS S3 using its URI and downloaded using the s3_get() and s3_get_files() functions; e.g., s3_get("s3://modis-aod-nasa/2020.05.22.tif"). The get functions always (invisibly) return paths to downloaded files, making it straightforward to read downloaded files into R. Files already present in the download location will be used before trying to download a file again. This means more concise code for downloading files, if they are not already downloaded, and reading files within R.

Installation

Install the CRAN latest release inside R with:

install.packages("s3")

Install the development version from GitHub:

# install.packages("remotes")
remotes::install_github("geomarker-io/s3")

Usage

Downloading Files

library(s3)

Download a single file specified by its S3 URI with:

s3_get("s3://geomarker/testing_downloads/mtcars.rds")

If a file has already been downloaded, then it will not be re-downloaded:

s3_get("s3://geomarker/testing_downloads/mtcars.rds")
#> ℹ 's3://geomarker/testing_downloads/mtcars.rds' already exists at '/var/folders/pg/q33bfwtj57d_v3vqpl7g26400000gn/T/RtmpTSph6V/R/s3/geomarker/testing_downloads/mtcars.rds'

Download multiple files with:

s3_get_files(c(
          "s3://geomarker/testing_downloads/mtcars.rds",
          "s3://geomarker/testing_downloads/mtcars_again.rds"
        ),
    confirm = FALSE)
#> ℹ 1 file already exists
#> ℹ 1 file totaling 1.23 kB will be downloaded to /var/folders/pg/q33bfwtj57d_v3vqpl7g26400000gn/T//RtmpTSph6V/R/s3
#> → Downloading 1 file.
#> → Got 0 files, downloading 1
#> ✔ Downloaded 1 file in 150ms.

Private Files

Downloading private files requires the name of the S3 bucket’s region (this is determined automatically when the file is public):

s3_get("s3://geomarker/testing_downloads/mtcars_private.rds", region = "us-east-2")

Setting up AWS credentials

You must have the appropriate AWS S3 credentials set to gain access to non-public files. As with other AWS command line tools and R packages, you can use the environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY to gain access to such files.

It is highly recommended to setup your environment variables outside of your R script to avoid including sensitive information within your R script. This can be done by exporting environment variables before starting R (see AWS CLI documentation on this) or by defining them in a .Renviron file (see ?.Renviron within R).

You can use the internal helper function to check if AWS key environment variables are set.

s3:::check_for_aws_env_vars()
#> ✖ AWS_SECRET_ACCESS_KEY and/or AWS_ACCESS_KEY_ID are unset
#> ℹ Non-public S3 files will not be available

Downloaded file paths

Files are saved within a directory structure matching that of the S3 URI. s3_get and s3_get_files both invisibly return the file path(s) of the downloaded files so that they can be further used to access the downloaded files. This makes it possible for different users with different operating systems and/or different project file structures and locations to utilize a downloaded S3 file without changing their source code:

s3_get("s3://geomarker/testing_downloads/mtcars.rds") |>
    readRDS()
#> ℹ 's3://geomarker/testing_downloads/mtcars.rds' already exists at '/var/folders/pg/q33bfwtj57d_v3vqpl7g26400000gn/T/RtmpTSph6V/R/s3/geomarker/testing_downloads/mtcars.rds'
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.