The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

sadists

Build Status codecov.io CRAN Downloads Total

Some Additional Distributions apparently not available in R.

– Steven E. Pav, shabbychef@gmail.com

Installation

This package can be installed from CRAN, via drat, or from github:

# via CRAN:
install.packages("sadists")
# via drat:
if (require(drat)) {
    drat:::add("shabbychef")
    install.packages("sadists")
}
# via devtools (typically 'master' is stable):
if (require(devtools)) {
    install_github("shabbychef/sadists")
}

Testing distributions

First some functions to test the ‘dpqr’ functions:

testf <- function(dpqr, nobs, ...) {
    require(ggplot2)
    require(grid)
    
    set.seed(3940071)
    rv <- sort(dpqr$r(nobs, ...))
    data <- data.frame(draws = rv, pvals = dpqr$p(rv, 
        ...))
    text.size <- 8  # sigh
    
    # http://stackoverflow.com/a/5688125/164611
    p1 <- ggplot(data, aes(x = draws)) + geom_line(aes(y = ..density.., 
        colour = "Empirical"), stat = "density") + 
        stat_function(fun = function(x) {
            dpqr$d(x, ...)
        }, aes(colour = "Theoretical")) + geom_histogram(aes(y = ..density..), 
        alpha = 0.3) + scale_colour_manual(name = "Density", 
        values = c("red", "blue")) + theme(text = element_text(size = text.size)) + 
        labs(title = "Density (tests dfunc)")
    
    # Q-Q plot
    p2 <- ggplot(data, aes(sample = draws)) + stat_qq(distribution = function(p) {
        dpqr$q(p, ...)
    }) + geom_abline(slope = 1, intercept = 0, colour = "red") + 
        theme(text = element_text(size = text.size)) + 
        labs(title = "Q-Q plot (tests qfunc)")
    
    # empirical CDF of the p-values; should be uniform
    p3 <- ggplot(data, aes(sample = pvals)) + stat_qq(distribution = qunif) + 
        geom_abline(slope = 1, intercept = 0, colour = "red") + 
        theme(text = element_text(size = text.size)) + 
        labs(title = "P-P plot (tests pfunc)")
    
    # Define grid layout to locate plots and print each
    # graph
    pushViewport(viewport(layout = grid.layout(2, 2)))
    print(p1, vp = viewport(layout.pos.row = 1, layout.pos.col = 1:2))
    print(p2, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))
    print(p3, vp = viewport(layout.pos.row = 2, layout.pos.col = 2))
}

Weighted sum of (non-central) chi-squares to power

This distribution is the weighted sum of independent (non-central) chi-square variates taken to some powers. The special case where the powers are all one half is related to the upsilon distribution. The special case where the powers are all one could be used to compute the distribution of the (doubly non-central) F distribution.

require(sadists)
wts <- c(-1, 1, 3, -3)
df <- c(100, 200, 100, 50)
ncp <- c(0, 1, 0.5, 2)
pow <- c(1, 0.5, 2, 1.5)
testf(list(d = dsumchisqpow, p = psumchisqpow, q = qsumchisqpow, 
    r = rsumchisqpow), nobs = 2^14, wts, df, ncp, pow)

plot of chunk sumchisqpow

K-prime distribution

The K-prime distribution is the weighted sum of a standard normal and an independent central chi, all divided by another independent central chi. Depending on the degrees of freedom and the weights, the K-prime can appears as a Lambda-prime, a normal, or a central t.

require(sadists)
v1 <- 50
v2 <- 80
a <- 0.5
b <- 1.5
testf(list(d = dkprime, p = pkprime, q = qkprime, r = rkprime), 
    nobs = 2^14, v1, v2, a, b)

plot of chunk kprime

Lambda prime distribution

A Lambda prime random variable is the sum of a standard normal and an independent, scaled central chi random variable.

require(sadists)
df <- 70
ts <- 2
testf(list(d = dlambdap, p = plambdap, q = qlambdap, 
    r = rlambdap), nobs = 2^14, df, ts)

plot of chunk lambdap

Upsilon distribution

An upsilon random variable is the sum of a standard normal and the weighted sum of several indpendent central chis.

require(sadists)
df <- c(30, 50, 100, 20, 10)
ts <- c(-3, 2, 5, -4, 1)
testf(list(d = dupsilon, p = pupsilon, q = qupsilon, 
    r = rupsilon), nobs = 2^14, df, ts)

plot of chunk upsilon

Doubly non-central t distribution

The doubly non-central t distribution generalizes the t distribution to the case where the denominator chi-square is non-central.

require(sadists)
df <- 75
ncp1 <- 2
ncp2 <- 3
testf(list(d = ddnt, p = pdnt, q = qdnt, r = rdnt), 
    nobs = 2^14, df, ncp1, ncp2)

plot of chunk dnt

Doubly non-central F distribution

The doubly non-central F distribution generalizes the F distribution to the case where the denominator chi-square is non-central.

require(sadists)
df1 <- 40
df2 <- 80
ncp1 <- 1.5
ncp2 <- 2.5
testf(list(d = ddnf, p = pdnf, q = qdnf, r = rdnf), 
    nobs = 2^14, df1, df2, ncp1, ncp2)

plot of chunk dnf

Doubly non-central Beta distribution

The doubly non-central Beta distribution can be viewed as a transformation of the doubly non-central F distribution.

require(sadists)
df1 <- 40
df2 <- 80
ncp1 <- 1.5
ncp2 <- 2.5
testf(list(d = ddnbeta, p = pdnbeta, q = qdnbeta, r = rdnbeta), 
    nobs = 2^14, df1, df2, ncp1, ncp2)

plot of chunk dnbeta

Doubly non-central Eta distribution

The doubly non-central Eta distribution can be viewed as the square root of the doubly non-central Beta distribution. It is a transform of the doubly non-central t distribution.

require(sadists)
df <- 100
ncp1 <- 0.5
ncp2 <- 2.5
testf(list(d = ddneta, p = pdneta, q = qdneta, r = rdneta), 
    nobs = 2^14, df, ncp1, ncp2)

plot of chunk dneta

Weighted sum of logs of (non-central) chi-squares

This distribution is the weighted sum of logs of independent (non-central) chi-square variates.

require(sadists)
wts <- c(5, -4, 10, -15)
df <- c(100, 200, 100, 50)
ncp <- c(0, 1, 0.5, 2)
testf(list(d = dsumlogchisq, p = psumlogchisq, q = qsumlogchisq, 
    r = rsumlogchisq), nobs = 2^14, wts, df, ncp)

plot of chunk sumlogchisq

Product of doubly non-central F variates

This distribution is the product of independent doubly non-central F variates. The PDQ functions are computed by transformation on the sum of log chi-squares distribution.

require(sadists)
df1 <- c(10, 20, 5)
df2 <- c(1000, 500, 150)
ncp1 <- c(1, 0, 2.5)
ncp2 <- c(0, 1.5, 5)
testf(list(d = dproddnf, p = pproddnf, q = qproddnf, 
    r = rproddnf), nobs = 2^14, df1, df2, ncp1, ncp2)

plot of chunk proddnf

Product of (non-central) chi-squares to power

This distribution is the product of independent (non-central) chi-square variates taken to some powers. The PDQ functions are computed by transformation on the sum of log chi-squares distribution.

require(sadists)
df <- c(100, 200, 100, 50)
ncp <- c(0, 1, 0.5, 2)
pow <- c(1, 0.5, 2, 1.5)
testf(list(d = dprodchisqpow, p = pprodchisqpow, q = qprodchisqpow, 
    r = rprodchisqpow), nobs = 2^14, df, ncp, pow)

plot of chunk prodchisqpow

Product of independent normals

This distribution is the product of independent normal variates. Warning: when the coefficient of variation is large for some of the factors, this approximation can be terrible.

require(sadists)
mu <- c(100, -50, -10)
sigma <- c(10, 5, 10)
testf(list(d = dprodnormal, p = pprodnormal, q = qprodnormal, 
    r = rprodnormal), nobs = 2^14, mu, sigma)

plot of chunk prodnormal

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.