The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The {samplezoo} package simplifies the generation of samples from various probability distributions, enabling users to quickly create datasets for demonstrations, troubleshooting, or teaching. By prioritizing simplicity and speed over the customization of sample parameters, {samplezoo} is ideal for beginners or anyone looking to save time when working with data.
{samplezoo} is available on CRAN. Install using:
install.packages("samplezoo")
You can install the development version of samplezoo from GitHub with:
# install.packages("pak")
::pak("nvietto/samplezoo") pak
Generating a dataset with various probability distributions typically looks like this:
<- data.frame(
numeric_data norm_2 = rnorm(n = 100, mean = 60, sd = 10),
norm_3 = rnorm(n = 100, mean = 40, sd = 20),
binom = rbinom(n = 100, size = 1, prob = runif(n = 100, min = 0, max = 1)),
neg = rnbinom(n = 100, size = 1, prob = 0.50),
pois = rpois(n = 100, lambda = 3),
exp = rexp(n = 100, rate = 0.10),
unif = runif(n = 100, min = 0, max = 1),
beta = rbeta(n = 100, shape1 = 2, shape2 = 5),
gamma = rgamma(n = 100, shape = 2, scale = 2),
chi_sq = rchisq(n = 100, df = 2),
t_dist = rt(n = 100, df = 10),
f_dist =rf(n = 100, df1 = 10, df2 = 10)
)
<- round(numeric_data, 2)
numeric_data
head(numeric_data)
norm_2 norm_3 binom neg pois exp unif beta gamma chi_sq t_dist f_dist1 54.11 28.67 1 0 3 5.02 0.18 0.40 9.38 0.91 -1.47 1.27
2 63.45 59.60 1 0 2 3.22 0.24 0.07 7.10 0.40 -0.71 1.43
3 61.65 44.14 0 3 4 1.82 0.89 0.04 2.37 1.10 -0.75 0.64
4 48.12 47.52 0 0 4 3.39 0.65 0.36 8.10 1.16 -1.23 1.83
5 49.70 26.29 0 0 1 31.68 0.93 0.18 3.09 0.59 0.59 0.90
6 63.17 20.99 1 0 5 1.70 0.40 0.31 2.78 0.18 -1.20 0.91
With {samplezoo}, you can use one line of code:
library(samplezoo)
<- samplezoo("small")
small_data
<- round(small_data, 2)
small_data
head(small_data)
norm norm_2 norm_3 binom neg pois exp unif beta gamma chi_sq t_dist f_dist1 75.33 50.06 43.18 1 0 3 31.23 0.05 0.17 5.96 1.01 0.02 1.28
2 43.76 52.50 9.47 1 0 4 9.96 0.23 0.36 3.39 1.49 -0.70 1.15
3 44.48 61.26 22.44 0 1 3 1.18 0.17 0.41 4.99 0.47 0.42 0.78
4 47.62 56.66 22.36 1 0 6 6.27 0.43 0.22 0.66 3.54 0.99 0.72
5 55.92 46.84 59.63 0 1 3 0.54 0.94 0.33 5.86 4.26 -1.05 2.06
6 39.56 76.65 43.02 0 1 1 18.88 0.55 0.40 9.11 0.37 1.82 1.78
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.