The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

A-quick-tour-of-MRHLP

Introduction

MRHLP: Flexible and user-friendly probabilistic joint segmentation of multivariate time series (or multivariate structured longitudinal data) with smooth and/or abrupt regime changes by a mixture model-based multiple regression approach with a hidden logistic process, fitted by the EM algorithm.

It was written in R Markdown, using the knitr package for production.

See help(package="samurais") for further details and references provided by citation("samurais").

Load simulated data

data("multivtoydataset")

Set up MRHLP model parameters

K <- 5 # Number of regimes (mixture components)
p <- 3 # Dimension of beta (order of the polynomial regressors)
q <- 1 # Dimension of w (order of the logistic regression: to be set to 1 for segmentation)
variance_type <- "heteroskedastic" # "heteroskedastic" or "homoskedastic" model

Set up EM parameters

n_tries <- 1
max_iter <- 1500
threshold <- 1e-6
verbose <- TRUE
verbose_IRLS <- FALSE

Estimation

mrhlp <- emMRHLP(multivtoydataset$x, multivtoydataset[,c("y1", "y2", "y3")], 
                 K, p, q, variance_type, n_tries, max_iter, threshold, verbose,
                 verbose_IRLS)
## EM: Iteration : 1 || log-likelihood : -4975.54177550763
## EM: Iteration : 2 || log-likelihood : -3108.34368262058
## EM: Iteration : 3 || log-likelihood : -3083.17524290617
## EM: Iteration : 4 || log-likelihood : -3052.50226046505
## EM: Iteration : 5 || log-likelihood : -3020.60866761548
## EM: Iteration : 6 || log-likelihood : -2967.37662637476
## EM: Iteration : 7 || log-likelihood : -2948.61300516787
## EM: Iteration : 8 || log-likelihood : -2945.45995948196
## EM: Iteration : 9 || log-likelihood : -2937.99296980136
## EM: Iteration : 10 || log-likelihood : -2924.28973590932
## EM: Iteration : 11 || log-likelihood : -2901.25080505023
## EM: Iteration : 12 || log-likelihood : -2859.88249265728
## EM: Iteration : 13 || log-likelihood : -2858.05147227319
## EM: Iteration : 14 || log-likelihood : -2856.38015373797
## EM: Iteration : 15 || log-likelihood : -2854.68196733762
## EM: Iteration : 16 || log-likelihood : -2852.69581368828
## EM: Iteration : 17 || log-likelihood : -2849.93140687413
## EM: Iteration : 18 || log-likelihood : -2846.34467342533
## EM: Iteration : 19 || log-likelihood : -2843.82658697638
## EM: Iteration : 20 || log-likelihood : -2842.75921489778
## EM: Iteration : 21 || log-likelihood : -2842.2361309076
## EM: Iteration : 22 || log-likelihood : -2841.91343876731
## EM: Iteration : 23 || log-likelihood : -2841.66202744546
## EM: Iteration : 24 || log-likelihood : -2841.41784741157
## EM: Iteration : 25 || log-likelihood : -2841.14668922972
## EM: Iteration : 26 || log-likelihood : -2840.82033081985
## EM: Iteration : 27 || log-likelihood : -2840.39141033072
## EM: Iteration : 28 || log-likelihood : -2839.74532802897
## EM: Iteration : 29 || log-likelihood : -2838.62532237046
## EM: Iteration : 30 || log-likelihood : -2836.64319641069
## EM: Iteration : 31 || log-likelihood : -2833.87378876047
## EM: Iteration : 32 || log-likelihood : -2831.75584262499
## EM: Iteration : 33 || log-likelihood : -2831.16293539695
## EM: Iteration : 34 || log-likelihood : -2831.0646784204
## EM: Iteration : 35 || log-likelihood : -2831.06467491195

Summary

mrhlp$summary()
## ----------------------
## Fitted MRHLP model
## ----------------------
## 
## MRHLP model with K = 5 regimes
## 
##  log-likelihood nu       AIC       BIC       ICL
##       -2831.065 98 -2929.065 -3149.921 -3149.146
## 
## Clustering table:
##   1   2   3   4   5 
## 100 120 200 100 150 
## 
## 
## ------------------
## Regime 1 (K = 1):
## 
## Regression coefficients:
## 
##       Beta(d = 1)   Beta(d = 2) Beta(d = 3)
## 1       0.4466558     0.8104534    -2.36719
## X^1   -25.5100013   -20.5995360    32.75195
## X^2   413.8717640   498.0085618  -541.38904
## X^3 -1811.4612012 -2477.5546420  2523.64723
## 
## Covariance matrix:
##                                   
##  1.17712613  0.1114059  0.07303969
##  0.11140591  0.8394152 -0.02442220
##  0.07303969 -0.0244222  0.85240361
## ------------------
## Regime 2 (K = 2):
## 
## Regression coefficients:
## 
##     Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1      21.30187   -4.108239    1.838238
## X^1  -199.86512  112.953325  112.257782
## X^2   905.60445 -449.623857 -493.914613
## X^3 -1316.42937  581.197948  694.872075
## 
## Covariance matrix:
##                                     
##   1.0409982 -0.180821350 0.137568024
##  -0.1808214  1.042169409 0.009699162
##   0.1375680  0.009699162 0.754147599
## ------------------
## Regime 3 (K = 3):
## 
## Regression coefficients:
## 
##     Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1     4.4721830    9.349642    6.349724
## X^1   0.7467282  -33.315977   17.837763
## X^2 -11.9302818   96.730621  -51.086769
## X^3  16.1571109  -85.951201   42.760070
## 
## Covariance matrix:
##                                     
##   1.02026230 -0.04094457 -0.02544812
##  -0.04094457  1.15656511  0.02852275
##  -0.02544812  0.02852275  0.99750511
## ------------------
## Regime 4 (K = 4):
## 
## Regression coefficients:
## 
##     Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1      1267.288   -840.5119   -10.37768
## X^1   -5458.816   3613.7273    19.40201
## X^2    7813.122  -5184.1100    14.37103
## X^3   -3718.619   2475.7168   -29.55020
## 
## Covariance matrix:
##                                       
##   0.822157811  0.006792726 -0.03667011
##   0.006792726  1.093351047 -0.07477892
##  -0.036670114 -0.074778924  0.85425249
## ------------------
## Regime 5 (K = 5):
## 
## Regression coefficients:
## 
##     Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1      194.7894    12.88268    483.8383
## X^1   -658.4685   -45.73544  -1634.9482
## X^2    753.1086    61.92925   1858.1529
## X^3   -286.1078   -27.37495   -702.9064
## 
## Covariance matrix:
##                                 
##  1.1282728 0.25684915 0.02034990
##  0.2568491 1.21055927 0.04414336
##  0.0203499 0.04414336 0.77644297

Plots

Fitted regressors

mrhlp$plot(what = "regressors")

Estimated signal

mrhlp$plot(what = "estimatedsignal")

Log-likelihood

mrhlp$plot(what = "loglikelihood")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.