The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
MRHLP: Flexible and user-friendly probabilistic joint segmentation of multivariate time series (or multivariate structured longitudinal data) with smooth and/or abrupt regime changes by a mixture model-based multiple regression approach with a hidden logistic process, fitted by the EM algorithm.
It was written in R Markdown, using the knitr package for production.
See help(package="samurais")
for further details and references provided by citation("samurais")
.
mrhlp <- emMRHLP(multivtoydataset$x, multivtoydataset[,c("y1", "y2", "y3")],
K, p, q, variance_type, n_tries, max_iter, threshold, verbose,
verbose_IRLS)
## EM: Iteration : 1 || log-likelihood : -4975.54177550763
## EM: Iteration : 2 || log-likelihood : -3108.34368262058
## EM: Iteration : 3 || log-likelihood : -3083.17524290617
## EM: Iteration : 4 || log-likelihood : -3052.50226046505
## EM: Iteration : 5 || log-likelihood : -3020.60866761548
## EM: Iteration : 6 || log-likelihood : -2967.37662637476
## EM: Iteration : 7 || log-likelihood : -2948.61300516787
## EM: Iteration : 8 || log-likelihood : -2945.45995948196
## EM: Iteration : 9 || log-likelihood : -2937.99296980136
## EM: Iteration : 10 || log-likelihood : -2924.28973590932
## EM: Iteration : 11 || log-likelihood : -2901.25080505023
## EM: Iteration : 12 || log-likelihood : -2859.88249265728
## EM: Iteration : 13 || log-likelihood : -2858.05147227319
## EM: Iteration : 14 || log-likelihood : -2856.38015373797
## EM: Iteration : 15 || log-likelihood : -2854.68196733762
## EM: Iteration : 16 || log-likelihood : -2852.69581368828
## EM: Iteration : 17 || log-likelihood : -2849.93140687413
## EM: Iteration : 18 || log-likelihood : -2846.34467342533
## EM: Iteration : 19 || log-likelihood : -2843.82658697638
## EM: Iteration : 20 || log-likelihood : -2842.75921489778
## EM: Iteration : 21 || log-likelihood : -2842.2361309076
## EM: Iteration : 22 || log-likelihood : -2841.91343876731
## EM: Iteration : 23 || log-likelihood : -2841.66202744546
## EM: Iteration : 24 || log-likelihood : -2841.41784741157
## EM: Iteration : 25 || log-likelihood : -2841.14668922972
## EM: Iteration : 26 || log-likelihood : -2840.82033081985
## EM: Iteration : 27 || log-likelihood : -2840.39141033072
## EM: Iteration : 28 || log-likelihood : -2839.74532802897
## EM: Iteration : 29 || log-likelihood : -2838.62532237046
## EM: Iteration : 30 || log-likelihood : -2836.64319641069
## EM: Iteration : 31 || log-likelihood : -2833.87378876047
## EM: Iteration : 32 || log-likelihood : -2831.75584262499
## EM: Iteration : 33 || log-likelihood : -2831.16293539695
## EM: Iteration : 34 || log-likelihood : -2831.0646784204
## EM: Iteration : 35 || log-likelihood : -2831.06467491195
mrhlp$summary()
## ----------------------
## Fitted MRHLP model
## ----------------------
##
## MRHLP model with K = 5 regimes
##
## log-likelihood nu AIC BIC ICL
## -2831.065 98 -2929.065 -3149.921 -3149.146
##
## Clustering table:
## 1 2 3 4 5
## 100 120 200 100 150
##
##
## ------------------
## Regime 1 (K = 1):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 0.4466558 0.8104534 -2.36719
## X^1 -25.5100013 -20.5995360 32.75195
## X^2 413.8717640 498.0085618 -541.38904
## X^3 -1811.4612012 -2477.5546420 2523.64723
##
## Covariance matrix:
##
## 1.17712613 0.1114059 0.07303969
## 0.11140591 0.8394152 -0.02442220
## 0.07303969 -0.0244222 0.85240361
## ------------------
## Regime 2 (K = 2):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 21.30187 -4.108239 1.838238
## X^1 -199.86512 112.953325 112.257782
## X^2 905.60445 -449.623857 -493.914613
## X^3 -1316.42937 581.197948 694.872075
##
## Covariance matrix:
##
## 1.0409982 -0.180821350 0.137568024
## -0.1808214 1.042169409 0.009699162
## 0.1375680 0.009699162 0.754147599
## ------------------
## Regime 3 (K = 3):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 4.4721830 9.349642 6.349724
## X^1 0.7467282 -33.315977 17.837763
## X^2 -11.9302818 96.730621 -51.086769
## X^3 16.1571109 -85.951201 42.760070
##
## Covariance matrix:
##
## 1.02026230 -0.04094457 -0.02544812
## -0.04094457 1.15656511 0.02852275
## -0.02544812 0.02852275 0.99750511
## ------------------
## Regime 4 (K = 4):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 1267.288 -840.5119 -10.37768
## X^1 -5458.816 3613.7273 19.40201
## X^2 7813.122 -5184.1100 14.37103
## X^3 -3718.619 2475.7168 -29.55020
##
## Covariance matrix:
##
## 0.822157811 0.006792726 -0.03667011
## 0.006792726 1.093351047 -0.07477892
## -0.036670114 -0.074778924 0.85425249
## ------------------
## Regime 5 (K = 5):
##
## Regression coefficients:
##
## Beta(d = 1) Beta(d = 2) Beta(d = 3)
## 1 194.7894 12.88268 483.8383
## X^1 -658.4685 -45.73544 -1634.9482
## X^2 753.1086 61.92925 1858.1529
## X^3 -286.1078 -27.37495 -702.9064
##
## Covariance matrix:
##
## 1.1282728 0.25684915 0.02034990
## 0.2568491 1.21055927 0.04414336
## 0.0203499 0.04414336 0.77644297
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.