The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
RHLP: Flexible and user-friendly probabilistic segmentation of time series (or structured longitudinal data) with smooth and/or abrupt regime changes by a mixture model-based regression approach with a hidden logistic process, fitted by the EM algorithm.
It was written in R Markdown, using the knitr package for production.
See help(package="samurais")
for further details and references provided by citation("samurais")
.
rhlp <- emRHLP(univtoydataset$x, univtoydataset$y, K, p, q,
variance_type, n_tries, max_iter, threshold, verbose, verbose_IRLS)
## EM: Iteration : 1 || log-likelihood : -2119.27308534609
## EM: Iteration : 2 || log-likelihood : -1149.01040321999
## EM: Iteration : 3 || log-likelihood : -1118.20384281234
## EM: Iteration : 4 || log-likelihood : -1096.88260636121
## EM: Iteration : 5 || log-likelihood : -1067.55719357295
## EM: Iteration : 6 || log-likelihood : -1037.26620122646
## EM: Iteration : 7 || log-likelihood : -1022.71743069484
## EM: Iteration : 8 || log-likelihood : -1006.11825447077
## EM: Iteration : 9 || log-likelihood : -1001.18491883952
## EM: Iteration : 10 || log-likelihood : -1000.91250763556
## EM: Iteration : 11 || log-likelihood : -1000.62280600209
## EM: Iteration : 12 || log-likelihood : -1000.3030988811
## EM: Iteration : 13 || log-likelihood : -999.932334880131
## EM: Iteration : 14 || log-likelihood : -999.484219706691
## EM: Iteration : 15 || log-likelihood : -998.928118038989
## EM: Iteration : 16 || log-likelihood : -998.234244664472
## EM: Iteration : 17 || log-likelihood : -997.359536276056
## EM: Iteration : 18 || log-likelihood : -996.152654857298
## EM: Iteration : 19 || log-likelihood : -994.697863447307
## EM: Iteration : 20 || log-likelihood : -993.186583974542
## EM: Iteration : 21 || log-likelihood : -991.81352379631
## EM: Iteration : 22 || log-likelihood : -990.611295217008
## EM: Iteration : 23 || log-likelihood : -989.539226273251
## EM: Iteration : 24 || log-likelihood : -988.55311887915
## EM: Iteration : 25 || log-likelihood : -987.539963690533
## EM: Iteration : 26 || log-likelihood : -986.073920116541
## EM: Iteration : 27 || log-likelihood : -983.263549878169
## EM: Iteration : 28 || log-likelihood : -979.340492188909
## EM: Iteration : 29 || log-likelihood : -977.468559852711
## EM: Iteration : 30 || log-likelihood : -976.653534236095
## EM: Iteration : 31 || log-likelihood : -976.5893387433
## EM: Iteration : 32 || log-likelihood : -976.589338067237
rhlp$summary()
## ---------------------
## Fitted RHLP model
## ---------------------
##
## RHLP model with K = 5 components:
##
## log-likelihood nu AIC BIC ICL
## -976.5893 33 -1009.589 -1083.959 -1083.176
##
## Clustering table (Number of observations in each regimes):
##
## 1 2 3 4 5
## 100 120 200 100 150
##
## Regression coefficients:
##
## Beta(K = 1) Beta(K = 2) Beta(K = 3) Beta(K = 4) Beta(K = 5)
## 1 6.031875e-02 -5.434903 -2.770416 120.7699 4.027542
## X^1 -7.424718e+00 158.705091 43.879453 -474.5888 13.194261
## X^2 2.931652e+02 -650.592347 -94.194780 597.7948 -33.760603
## X^3 -1.823560e+03 865.329795 67.197059 -244.2386 20.402153
##
## Variances:
##
## Sigma2(K = 1) Sigma2(K = 2) Sigma2(K = 3) Sigma2(K = 4) Sigma2(K = 5)
## 1.220624 1.110243 1.079394 0.9779734 1.028332
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.