The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Example 5: Vital Signs Table

The fifth example produces a summary table of selected Vital Signs for Placebo vs. Treated groups. The report shows statistics for both baseline and after-treatment time points. This example also demonstrates how to use tidyverse functions for data preparation instead of procs.

Program

Note the following about this example:

library(tidyverse)
library(sassy)

options("logr.autolog" = TRUE,
        "logr.notes" = FALSE)

# Get path to temp directory
tmp <- tempdir() 

# Get path to sample data
pkg <- system.file("extdata", package = "sassy")

# Open log
lgpth <- log_open(file.path(tmp, "example5.log"))

sep("Prepare Data")

# Create libname for csv data
libname(sdtm, pkg, "csv") 

put("Join and prepare data")
prep <- sdtm$DM |> 
  left_join(sdtm$VS, by = c("USUBJID" = "USUBJID")) |> 
  select(USUBJID, VSTESTCD, VISIT, VISITNUM, VSSTRESN, ARM, VSBLFL) |> 
  filter(VSTESTCD %in% c("PULSE", "RESP", "TEMP", "DIABP", "SYSBP"), 
         !(VISIT == "SCREENING" & VSBLFL != "Y")) |> 
  arrange(USUBJID, VSTESTCD, VISITNUM) |> 
  group_by(USUBJID, VSTESTCD) |> 
  datastep(retain = list(BSTRESN = 0), {
    
    # Combine treatment groups
    # And distingish baseline time points
    if (ARM == "ARM A") {
      if (VSBLFL %eq% "Y") {
        GRP <- "A_BASE"
      } else {
        GRP <- "A_TRT"
      }
    } else {
      if (VSBLFL %eq% "Y") {
        GRP <- "O_BASE"
      } else {
        GRP <- "O_TRT"
      }
    }
    
    # Populate baseline value
    if (first.)
      BSTRESN = VSSTRESN
    
  }) |> 
  ungroup() 

put("Get population counts")
pop_A <- prep |> select(USUBJID, GRP) |> filter(GRP == "A_BASE") |> 
  distinct() |> count() |> deframe() |> put()
pop_O <- prep |> select(USUBJID, GRP) |> filter(GRP == "O_BASE") |> 
  distinct() |> count() |> deframe() |> put()

put("Prepare final data frame")
final <- prep |> 
  select(VSTESTCD, GRP, VSSTRESN, BSTRESN) |> 
  group_by(VSTESTCD, GRP) |> 
  summarize(Mean = fmt_mean_sd(VSSTRESN),
            Median = fmt_median(VSSTRESN),
            Quantiles = fmt_quantile_range(VSSTRESN),
            Range = fmt_range(VSSTRESN)) |> 
  ungroup() |> 
  pivot_longer(cols = c(Mean, Median, Quantiles, Range),
               names_to = "stats",
               values_to = "values") |> 
  pivot_wider(names_from = GRP,
              values_from = values) |> 
  put()


sep("Create formats")

# Vital sign lookup format 
vs_fmt <- c(PULSE = "Pulse", 
            TEMP = "Temperature °C", 
            RESP = "Respirations/min", 
            SYSBP = "Systolic Blood Pressure", 
            DIABP = "Diastolic Blood Pressure") |> 
  put()

# Statistics user-defined format                
stat_fmt <- value(condition(x == "Mean", "Mean (SD)"),
                  condition(x == "Quantiles", "Q1 - Q3")) |> 
  put()

sep("Create Report")


# Apply sort
final <- final |> 
  mutate(VSTESTCD = factor(VSTESTCD, levels = names(vs_fmt))) |> 
  arrange(VSTESTCD)

# Define table object
tbl <- create_table(final, borders = "bottom") |> 
  spanning_header(A_BASE, A_TRT, "Placebo", n = pop_A) |> 
  spanning_header(O_BASE, O_TRT, "Treated", n = pop_O) |> 
  column_defaults(width = 1.25, align = "center") |> 
  stub(c(VSTESTCD, stats), width = 2.5) |> 
  define(VSTESTCD, "Vital Sign", format = vs_fmt, 
         blank_after = TRUE, dedupe = TRUE, label_row = TRUE) |> 
  define(stats, indent = .25, format = stat_fmt) |> 
  define(A_BASE, "Baseline") |> 
  define(A_TRT, "After Treatment") |> 
  define(O_BASE, "Baseline") |> 
  define(O_TRT, "After Treatment")

# Construct output path
pth <- file.path(tmp, "output/t_vs.pdf")

# Define report object
rpt <- create_report(pth, output_type = "PDF", font = "Times", 
                     font_size = 11) |> 
  page_header("Sponsor: Company", "Study: ABC") |> 
  titles("Table 4.0", "Selected Vital Signs", bold = TRUE, font_size = 12) |> 
  add_content(tbl, align = "center") |> 
  page_footer(Sys.time(), "CONFIDENTIAL", "Page [pg] of [tpg]")

# Write report to file system  
write_report(rpt) 

# Close log
log_close()

# View files
# file.show(pth)
# file.show(lgpth)

Output

Here is the output report:

Log

Here is the log from the above example:

========================================================================= 
Log Path: C:/Users/User/AppData/Local/Temp/Rtmpum5T6o/log/example5.log 
Working Directory: C:/packages/Testing 
User Name: User 
R Version: 4.0.3 (2020-10-10) 
Machine: DESKTOP-1F27OR8 x86-64 
Operating System: Windows 10 x64 build 18363 
Log Start Time: 2021-01-05 08:13:13 
========================================================================= 

========================================================================= 
Prepare Data 
========================================================================= 

# library 'sdtm': 8 items
- attributes: csv not loaded
- path: C:/Users/User/Documents/R/win-library/4.0/sassy/extdata
- items:
  Name Extension Rows Cols     Size        LastModified
1   AE       csv  150   27  88.1 Kb 2020-12-27 23:21:55
2   DA       csv 3587   18 527.8 Kb 2020-12-27 23:21:55
3   DM       csv   87   24  45.2 Kb 2020-12-27 23:21:55
4   DS       csv  174    9  33.7 Kb 2020-12-27 23:21:55
5   EX       csv   84   11    26 Kb 2020-12-27 23:21:55
6   IE       csv    2   14    13 Kb 2020-12-27 23:21:55
7   SV       csv  685   10  69.9 Kb 2020-12-27 23:21:55
8   VS       csv 3358   17   467 Kb 2020-12-27 23:21:55

Join and prepare data 

left_join: added 18 columns (STUDYID.x, DOMAIN.x, STUDYID.y, DOMAIN.y, VSSEQ, …)

           > rows only in x       0

           > rows only in y  (    0)

           > matched rows     3,358    (includes duplicates)

           >                 =======

           > rows total       3,358

select: dropped 33 variables (STUDYID.x, DOMAIN.x, SUBJID, RFSTDTC, RFENDTC, …)

filter: removed 590 rows (18%), 2,768 rows remaining

group_by: 2 grouping variables (USUBJID, VSTESTCD)

datastep: columns decreased from 7 to 9 

ungroup: no grouping variables

# A tibble: 2,768 x 9
   USUBJID    VSTESTCD VISIT   VISITNUM VSSTRESN ARM   VSBLFL BSTRESN GRP   
   <chr>      <chr>    <chr>      <dbl>    <dbl> <chr> <chr>    <dbl> <chr> 
 1 ABC-01-049 DIABP    DAY 1          1       76 ARM D Y           76 O_BASE
 2 ABC-01-049 DIABP    WEEK 2         2       66 ARM D <NA>        76 O_TRT 
 3 ABC-01-049 DIABP    WEEK 4         4       84 ARM D <NA>        76 O_TRT 
 4 ABC-01-049 DIABP    WEEK 6         6       68 ARM D <NA>        76 O_TRT 
 5 ABC-01-049 DIABP    WEEK 8         8       80 ARM D <NA>        76 O_TRT 
 6 ABC-01-049 DIABP    WEEK 12       12       70 ARM D <NA>        76 O_TRT 
 7 ABC-01-049 DIABP    WEEK 16       16       70 ARM D <NA>        76 O_TRT 
 8 ABC-01-049 PULSE    DAY 1          1       84 ARM D Y           84 O_BASE
 9 ABC-01-049 PULSE    WEEK 2         2       84 ARM D <NA>        84 O_TRT 
10 ABC-01-049 PULSE    WEEK 4         4       76 ARM D <NA>        84 O_TRT 
# ... with 2,758 more rows

Get population counts 

select: dropped 7 variables (VSTESTCD, VISIT, VISITNUM, VSSTRESN, ARM, …)

filter: removed 2,669 rows (96%), 99 rows remaining

distinct: removed 79 rows (80%), 20 rows remaining

count: now one row and one column, ungrouped

[1] 20

select: dropped 7 variables (VSTESTCD, VISIT, VISITNUM, VSSTRESN, ARM, …)

filter: removed 2,435 rows (88%), 333 rows remaining

distinct: removed 266 rows (80%), 67 rows remaining

count: now one row and one column, ungrouped

[1] 67

Prepare final data frame 

select: dropped 5 variables (USUBJID, VISIT, VISITNUM, ARM, VSBLFL)

group_by: 2 grouping variables (VSTESTCD, GRP)

summarize: now 20 rows and 6 columns, one group variable remaining (VSTESTCD)

ungroup: no grouping variables

pivot_longer: reorganized (Mean, Median, Quantiles, Range) into (stats, values) [was 20x6, now 80x4]

pivot_wider: reorganized (GRP, values) into (A_BASE, A_TRT, O_BASE, O_TRT) [was 80x4, now 20x6]

# A tibble: 20 x 6
   VSTESTCD stats     A_BASE        A_TRT         O_BASE        O_TRT        
   <chr>    <chr>     <chr>         <chr>         <chr>         <chr>        
 1 DIABP    Mean      77.2 (10.7)   77.1 (8.1)    77.5 (8.1)    76.9 (9.2)   
 2 DIABP    Median    78.5          78.0          78.0          78.0         
 3 DIABP    Quantiles 70.0 - 82.5   72.0 - 82.0   70.2 - 82.0   70.0 - 83.8  
 4 DIABP    Range     54 - 96       50 - 98       61 - 95       50 - 104     
 5 PULSE    Mean      72.8 (10.1)   74.6 (10.2)   73.6 (9.7)    74.0 (9.9)   
 6 PULSE    Median    72.0          74.0          72.0          72.0         
 7 PULSE    Quantiles 66.0 - 76.0   67.0 - 80.0   67.5 - 79.5   66.0 - 80.0  
 8 PULSE    Range     60 - 103      54 - 102      52 - 100      50 - 109     
 9 RESP     Mean      16.5 (2.5)    15.8 (3.4)    16.0 (3.1)    15.4 (3.4)   
10 RESP     Median    16.0          16.0          16.0          16.0         
11 RESP     Quantiles 16.0 - 18.0   16.0 - 18.0   15.5 - 18.0   12.0 - 18.0  
12 RESP     Range     12 - 20       8 - 24        8 - 22        8 - 24       
13 SYSBP    Mean      128.2 (16.7)  130.4 (17.6)  126.7 (15.5)  125.9 (15.2) 
14 SYSBP    Median    125.5         126.0         123.0         124.0        
15 SYSBP    Quantiles 117.5 - 140.0 118.0 - 140.0 116.0 - 138.0 115.2 - 135.0
16 SYSBP    Range     98 - 161      95 - 184      100 - 164     82 - 180     
17 TEMP     Mean      36.5 (0.4)    36.5 (0.3)    36.4 (0.5)    36.3 (0.4)   
18 TEMP     Median    36.4          36.5          36.4          36.3         
19 TEMP     Quantiles 36.2 - 36.9   36.2 - 36.6   36.2 - 36.6   36.1 - 36.5  
20 TEMP     Range     35.9 - 37.4   35.8 - 37.3   35.3 - 39.8   34.4 - 38.2  

========================================================================= 
Create formats 
========================================================================= 

PULSE                       TEMP                       RESP                      SYSBP 
"Pulse"           "Temperature °C"         "Respirations/min"  "Systolic Blood Pressure" 
DIABP 
"Diastolic Blood Pressure" 

# A user-defined format: 2 conditions
  Name Type       Expression     Label Order
1    x    U      x == "Mean" Mean (SD)    NA
2    x    U x == "Quantiles"   Q1 - Q3    NA

========================================================================= 
Create Report 
========================================================================= 

mutate: converted 'VSTESTCD' from character to factor (0 new NA)

# A report specification: 1 pages
- file_path: 'C:\Users\User\AppData\Local\Temp\Rtmpum5T6o/output/t_vs.rtf'
- output_type: RTF
- units: inches
- orientation: landscape
- line size/count: 108/48
- page_header: left=Sponsor: Company right=Study: ABC
- title 1: 'Table 4.0'
- title 2: 'Selected Vital Signs'
- page_footer: left=2021-01-05 08:13:45 center=CONFIDENTIAL right=Page [pg] of [tpg]
- content: 
# A table specification:
- data: tibble 'final' 20 rows 6 cols
- show_cols: all
- use_attributes: all
- spanning_header: from='A_BASE' to='A_TRT' 'Placebo' level=1 
- spanning_header: from='O_BASE' to='O_TRT' 'Treated' level=1 
- stub: VSTESTCD stats width=2.5 align='left' 
- define: VSTESTCD 'Vital Sign' dedupe='TRUE' 
- define: stats 
- define: A_BASE 'Baseline' 
- define: A_TRT 'After Treatment' 
- define: O_BASE 'Baseline' 
- define: O_TRT 'After Treatment' 

========================================================================= 
Log End Time: 2021-01-05 08:13:49 
Log Elapsed Time: 0 00:00:36 
========================================================================= 

Next: Example 6: Figure with By Group

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.