The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Identify Copy Number Variations (CNVs) in cancer cells

Analyze snATAC-seq data of basal cell carcinoma sample SU008_Tumor_Pre in GEO (GSE129785).

library(scPloidy)
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(tidyr)
library(gplots)
#> 
#> Attaching package: 'gplots'
#> The following object is masked from 'package:stats':
#> 
#>     lowess

You can skip the preprocessing and start from section CNV.

Download from GEO

Download GSE129785_scATAC-TME-All.cell_barcodes.txt.gz from below and gunzip https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE129785&format=file&file=GSE129785%5FscATAC%2DTME%2DAll%2Ecell%5Fbarcodes%2Etxt%2Egz

Download GSM3722064_SU008_Tumor_Pre_fragments.tsv.gz from https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSM3722064&format=file&file=GSM3722064%5FSU008%5FTumor%5FPre%5Ffragments%2Etsv%2Egz

Prepare windows and peaks

The input window file window.hg37.20MB.bed and resultant peak file multi_tissue_peaks.hg37.20MB.bed can be downloaded from https://doi.org/10.6084/m9.figshare.23574066

To reproduce by yourself, download chromatin accessibility DHS_Index_and_Vocabulary_hg19_WM20190703.txt.gz from https://doi.org/10.5281/zenodo.3838751

Generate peaks for 20MB windows using peak_sum.R by yardimcilab in https://github.com/yardimcilab/RIDDLER/blob/main/util/peak_sum.R

SU008_Tumor_Pre_windowcovariates =
  read.table(
    "multi_tissue_peaks.hg37.20MB.bed",
    header = FALSE)
colnames(SU008_Tumor_Pre_windowcovariates) =
  c("chr", "start", "end", "window", "peaks")

Compute fragmentoverlap from fragments

See vignette of R package scPloidy. Load setting for hg19 genome.

simpleRepeat = readr::read_tsv(
  "~/human/publichuman/hg37_ucsc/simpleRepeat.chrom_chromStart_chromEnd.txt.gz",
  col_names = c("chrom", "chromStart", "chromEnd"))
rmsk = readr::read_tsv(
  "~/human/publichuman/hg37_ucsc/rmsk.Simple_repeat.genoName_genoStart_genoEnd.txt.gz",
  col_names = c("chrom", "chromStart", "chromEnd"))
simpleRepeat = rbind(simpleRepeat, rmsk)
rm(rmsk)
# convert from 0-based position to 1-based
simpleRepeat[, 2] = simpleRepeat[, 2] + 1
simpleRepeat = GenomicRanges::makeGRangesFromDataFrame(
  as.data.frame(simpleRepeat),
  seqnames.field = "chrom",
  start.field    = "chromStart",
  end.field      = "chromEnd")
# remove duplicates
simpleRepeat = GenomicRanges::union(simpleRepeat, GenomicRanges::GRanges())
window = read.table("window.hg37.20MB.bed", header = FALSE)
colnames(window) = c("chr", "start", "end", "window")
at = GenomicRanges::makeGRangesFromDataFrame(window[, 1:3])
barcodesuffix = paste0(".", window$window)
sc = read.csv(
  "GSE129785_scATAC-TME-All.cell_barcodes.txt",
  header = TRUE,
  sep = "\t")

Compute and save fragmentoverlap.

sample = "GSM3722064"
tissue = "SU008_Tumor_Pre"

bc = sc$Barcodes[sc$Group == tissue]
SU008_Tumor_Pre_fragmentoverlap =
  fragmentoverlapcount(
    paste0("SRX5679934/", sample, "_", tissue, "_fragments.tsv.gz"),
    at,
    excluderegions = simpleRepeat,
    targetbarcodes = bc,
    Tn5offset = c(1, 0),
    barcodesuffix = barcodesuffix
  )

CNV

You can skip above and load preprocessed data attached to the package. The data file GSE129785_SU008_Tumor_Pre.RData is also available from https://doi.org/10.6084/m9.figshare.23574066

data(GSE129785_SU008_Tumor_Pre)

Infer CNVs.

levels = c(2, 4)
result = cnv(SU008_Tumor_Pre_fragmentoverlap,
             SU008_Tumor_Pre_windowcovariates,
             levels = levels,
             deltaBICthreshold = -600)
#> [1] "Computing span = 2"
#> [1] "Computing span = 3"
#> [1] "Computing span = 4"
#> [1] "Computing span = 5"
#> [1] "Computing span = 6"
#> [1] "Computing span = 7"
#> [1] "Computing span = 8"
#> [1] "Computing span = 9"
#> [1] "Computing span = 10"
#> [1] "Computing span = 2"
#> [1] "Computing span = 3"
#> [1] "Computing span = 4"
#> [1] "Computing span = 5"
#> [1] "Computing span = 6"
#> [1] "Computing span = 7"
#> [1] "Computing span = 8"
#> [1] "Computing span = 9"
#> [1] "Computing span = 10"

Attach the result to fragmentoverlap.

windowcovariates = SU008_Tumor_Pre_windowcovariates
windowcovariates$w =
  as.numeric(sub("window_", "", windowcovariates$window))

fragmentoverlap = SU008_Tumor_Pre_fragmentoverlap
fragmentoverlap$cell =
  sub(".window.*", "", fragmentoverlap$barcode)
fragmentoverlap$window =
  sub(".*window", "window", fragmentoverlap$barcode)
fragmentoverlap$w =
  as.numeric(sub("window_", "", fragmentoverlap$window))

x = match(fragmentoverlap$barcode,
        result$cellwindowCN$barcode)
fragmentoverlap$CN = result$cellwindowCN$CN[x]
fragmentoverlap$ploidy.moment.cell = result$cellwindowCN$ploidy.moment.cell[x]
fragmentoverlap = fragmentoverlap[!is.na(fragmentoverlap$CN), ]

# For better hierarchical clustering
fragmentoverlap$pwindownormalizedcleanedceiled =
  pmin(fragmentoverlap$CN, min(levels) * 2)

Make dataframe for plotting.

dataplot =
  fragmentoverlap %>%
  dplyr::select("w", "cell", "pwindownormalizedcleanedceiled") %>%
  tidyr::pivot_wider(names_from = "w", values_from = "pwindownormalizedcleanedceiled")
dataplot = as.data.frame(dataplot)
rownames(dataplot) = dataplot$cell
dataplot = dataplot[, colnames(dataplot) != "cell"]
dataplot = as.matrix(dataplot)
n = max(as.numeric(colnames(dataplot)))
dataplot = dataplot[, match(as.character(1:n), colnames(dataplot))]
colnames(dataplot) = as.character(1:n)

Plot.

breaks = c(0, min(levels) - 1, min(levels) + 1, min(levels) * 2)

x = windowcovariates
x$chr[duplicated(windowcovariates$chr)] = NA
x = x$chr[match(colnames(dataplot), x$w)]

RowSideColors =
  unlist(
    lapply(
      fragmentoverlap$ploidy.moment.cell[
        match(rownames(dataplot), fragmentoverlap$cell)],
      function (x) { which(sort(levels) == x)}))
RowSideColors = topo.colors(length(levels))[RowSideColors]

gplots::heatmap.2(
  dataplot,
  Colv = FALSE,
  dendrogram = "none",
  breaks = breaks,
  col = c("blue", "gray80", "red"),
  trace = "none", labRow = FALSE, na.color = "white",
  labCol = x,
  RowSideColors= RowSideColors)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.