The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Using scatterbar with Visium data

Dee Velazquez and Jean Fan

2024-11-22

Using scatterbar with Visium data

Below is how to use scatterbar from the provided Visium dataset of an FFPE preserved adult mouse brain partial coronal section from 10X Genomics.

library(scatterbar)
library(ggplot2)
data("adult_mouse_brain_ffpe")

plot(adult_mouse_brain_ffpe$pos)

head(adult_mouse_brain_ffpe$prop)
#>                            1          2         3         4         5         6
#> AAACAGAGCGACTCCT-1 0.1264103 0.00000000 0.0000000 0.2183626 0.0000000 0.0000000
#> AAACCCGAACGAAATC-1 0.0000000 0.00000000 0.0000000 0.0000000 0.1612265 0.7494948
#> AAACCGGGTAGGTACC-1 0.2881994 0.32242398 0.0000000 0.3893766 0.0000000 0.0000000
#> AAACCGTTCGTCCAGG-1 0.3040547 0.27785934 0.2535515 0.0000000 0.0000000 0.0000000
#> AAACGAAGAACATACC-1 0.1585737 0.09403518 0.0000000 0.3510139 0.0000000 0.0000000
#> AAACGAGACGGTTGAT-1 0.0000000 0.00000000 0.2962469 0.0000000 0.0000000 0.0000000
#>                            7 8          9 10         11         12
#> AAACAGAGCGACTCCT-1 0.1865617 0 0.07496736  0 0.39369799 0.00000000
#> AAACCCGAACGAAATC-1 0.0000000 0 0.00000000  0 0.00000000 0.08927876
#> AAACCGGGTAGGTACC-1 0.0000000 0 0.00000000  0 0.00000000 0.00000000
#> AAACCGTTCGTCCAGG-1 0.0768548 0 0.00000000  0 0.08767969 0.00000000
#> AAACGAAGAACATACC-1 0.2808292 0 0.00000000  0 0.11554800 0.00000000
#> AAACGAGACGGTTGAT-1 0.0000000 0 0.00000000  0 0.00000000 0.70375311

start.time <- Sys.time()
scatterbar(
  adult_mouse_brain_ffpe$prop,
  adult_mouse_brain_ffpe$pos,
  size_x = 220,
  size_y = 220,
  legend_title = "Cell Types"
) + coord_fixed()
#> Calculated size_x: 220
#> Calculated size_y: 220
#> Applied padding_x: 0
#> Applied padding_y: 0


end.time <- Sys.time()
print(end.time - start.time)
#> Time difference of 0.1058111 secs

Just like with the mOB data, we can change the order of how each bar is laid out by changing the order of the cell-type proportion matrix and combine scatterbar with other ggplot geoms and customization.

start.time <- Sys.time()
custom_colors <- c('1'= '#5d6f99',
    '2' = '#985a39',
    '3' =  '#d6589a',
    '4' = '#4d1395',
    '5' = '#b5ef27',
    '6' = '#77d5bc',
    '7' = '#7830d2',
    '8' ='#b43b59',
    '9' = '#1c40b1',
    '10' = "#FF5733",
    '11' = '#FFFF00',
    '12' = '#f4a6f1')
scatterbar::scatterbar(adult_mouse_brain_ffpe$prop[, c(2,3,4,11,5,6,10,7,8,1,9, 12)], adult_mouse_brain_ffpe$pos, size_x = 220, size_y = 220, padding_x = 0.1, padding_y = 0.1, legend_title = 'Cell Type', colors = custom_colors) +
  geom_point(data=adult_mouse_brain_ffpe$pos, mapping=aes(x=x, y=y), size = 0.1) +
  theme_bw() + ylab('y') + ggplot2::coord_fixed()
#> Calculated size_x: 219.9
#> Calculated size_y: 219.9
#> Applied padding_x: 0.1
#> Applied padding_y: 0.1

end.time <- Sys.time()
print(end.time - start.time)
#> Time difference of 0.1192179 secs

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.