The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(dplyr)
library(ggplot2)
library(recipes)
library(scimo)
theme_set(theme_light())
data("pedcan_expression")
pedcan.R
pedcan_expression
contains the expression of 108 cell
lines from 5 different pediatric cancers. Additionally, it includes
information on the sex of the original donor, the type of cancer it
represents, and whether it is a primary tumor or a metastasis.
pedcan_expression
#> # A tibble: 108 × 19,197
#> cell_line sex event disease A1BG A1CF A2M A2ML1 A3GALT2 A4GALT A4GNT
#> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 143B Fema… Prim… Osteos… 3.02 0.0566 2.78 0 0 2.13 0
#> 2 A-673 Fema… Prim… Ewing … 4.87 0 2.00 3.19 0.0841 4.62 0.189
#> 3 BT-12 Fema… Prim… Embryo… 3.52 0.0286 0.111 0 0 2.32 0.0704
#> 4 BT-16 Male Unkn… Embryo… 3.51 0 0.433 0.0144 0 1.54 0.0144
#> 5 C396 Male Meta… Osteos… 4.59 0 0.956 0 0 5.10 0
#> 6 CADO-ES1 Fema… Meta… Ewing … 5.89 0 0.614 0.379 0.0704 6.60 0.151
#> 7 CAL-72 Male Prim… Osteos… 4.35 0.0426 0.333 0 0 0.614 0
#> 8 CBAGPN Fema… Prim… Ewing … 4.87 0.0976 1.33 0.111 0 0.722 0.0704
#> 9 CHLA-06 Fema… Unkn… Embryo… 5.05 0 0.124 0 0 0.848 0.138
#> 10 CHLA-10 Fema… Unkn… Ewing … 5.05 0.0144 0.949 1.73 0.0704 0.506 0.0704
#> # ℹ 98 more rows
#> # ℹ 19,186 more variables: AAAS <dbl>, AACS <dbl>, AADAC <dbl>, AADACL2 <dbl>,
#> # AADACL3 <dbl>, AADACL4 <dbl>, AADAT <dbl>, AAGAB <dbl>, AAK1 <dbl>,
#> # AAMDC <dbl>, AAMP <dbl>, AANAT <dbl>, AAR2 <dbl>, AARD <dbl>, AARS1 <dbl>,
#> # AARS2 <dbl>, AARSD1 <dbl>, AASDH <dbl>, AASDHPPT <dbl>, AASS <dbl>,
#> # AATF <dbl>, AATK <dbl>, ABAT <dbl>, ABCA1 <dbl>, ABCA10 <dbl>,
#> # ABCA12 <dbl>, ABCA13 <dbl>, ABCA2 <dbl>, ABCA3 <dbl>, ABCA4 <dbl>, …
pedcan.R
count(pedcan_expression, disease, sort = TRUE)
#> # A tibble: 5 × 2
#> disease n
#> <chr> <int>
#> 1 Neuroblastoma 33
#> 2 Ewing Sarcoma 22
#> 3 Rhabdomyosarcoma 20
#> 4 Embryonal Tumor 17
#> 5 Osteosarcoma 16
pedcan.R
One approach to exploring this dataset is by performing PCA.
rec_naive_pca <-
recipe(pedcan_expression) %>%
update_role(-cell_line) %>%
step_zv(all_numeric_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors()) %>%
prep()
rec_naive_pca %>%
bake(new_data = NULL) %>%
ggplot() +
aes(x = PC1, y = PC2, color = disease) +
geom_point()
pedcan.R
To improve the appearance of PCA, one can precede it with a feature
selection step based on the coefficient of variation. Here,
step_select_cv
keeps only one fourth of the original
features.
rec_cv_pca <-
recipe(pedcan_expression) %>%
update_role(-cell_line) %>%
step_select_cv(all_numeric_predictors(), prop_kept = 1/4) %>%
step_normalize(all_numeric_predictors()) %>%
step_pca(all_numeric_predictors()) %>%
prep()
rec_cv_pca %>%
bake(new_data = NULL) %>%
ggplot() +
aes(x = PC1, y = PC2, color = disease) +
geom_point()
pedcan.R
The tidy
method allows to see which features are
kept.
tidy(rec_cv_pca, 1)
#> # A tibble: 19,193 × 4
#> terms cv kept id
#> <chr> <dbl> <lgl> <chr>
#> 1 A1BG 0.371 FALSE select_cv_5bV4K
#> 2 A1CF 4.60 TRUE select_cv_5bV4K
#> 3 A2M 1.69 TRUE select_cv_5bV4K
#> 4 A2ML1 2.45 TRUE select_cv_5bV4K
#> 5 A3GALT2 2.37 TRUE select_cv_5bV4K
#> 6 A4GALT 0.979 FALSE select_cv_5bV4K
#> 7 A4GNT 1.53 FALSE select_cv_5bV4K
#> 8 AAAS 0.0934 FALSE select_cv_5bV4K
#> 9 AACS 0.194 FALSE select_cv_5bV4K
#> 10 AADAC 3.40 TRUE select_cv_5bV4K
#> # ℹ 19,183 more rows
pedcan.R
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.