The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
________
/\ sec \
/ \ ret \
\ / base /
\/_______/
Fast and memory-efficient streaming hash functions and base64 encoding / decoding.
Hashes strings and raw vectors directly. Stream hashes files which can be larger than memory, as well as in-memory objects through R’s serialization mechanism.
Implementations include the SHA-256, SHA-3 and ‘Keccak’ cryptographic hash functions, SHAKE256 extendable-output function (XOF), and ‘SipHash’ pseudo-random function.
library(secretbase)
For the SHA-3 cryptographic hash algorithm, specify bits
as one of 224
, 256
, 384
or
512
:
sha3("secret base")
#> [1] "a721d57570e7ce366adee2fccbe9770723c6e3622549c31c7cab9dbb4a795520"
sha3("secret base", convert = FALSE)
#> [1] a7 21 d5 75 70 e7 ce 36 6a de e2 fc cb e9 77 07 23 c6 e3 62 25 49 c3 1c 7c
#> [26] ab 9d bb 4a 79 55 20
sha3("秘密の基地の中", bits = 512L)
#> [1] "e30cdc73f6575c40d55b5edc8eb4f97940f5ca491640b41612e02a05f3e59dd9c6c33f601d8d7a8e2ca0504b8c22f7bc69fa8f10d7c01aab392781ff4ae1e610"
Character strings and raw vectors are hashed directly.
All other objects are stream hashed using R serialization.
sha3(data.frame(a = 1, b = 2), bits = 224L)
#> [1] "03778aad53bff7dd68caab94374bba6f07cea235fb97b3c52cf612e9"
sha3(NULL)
#> [1] "b3e37e4c5def1bfb2841b79ef8503b83d1fed46836b5b913d7c16de92966dcee"
Files are read and hashed incrementally, accepting files larger than memory:
<- tempfile(); cat("secret base", file = file)
file sha3(file = file)
#> [1] "a721d57570e7ce366adee2fccbe9770723c6e3622549c31c7cab9dbb4a795520"
May be used as deterministic random seeds for R’s pseudo random
number generators (RNGs).
Specify convert = NA
and
bits = 32
for a single integer value:
shake256("秘密の基地の中", bits = 32L, convert = NA)
#> [1] 2000208511
For use in parallel computing, this is a valid method for reducing to a negligible probability that RNGs in each process may overlap. This may be especially suitable when first-best alternatives such as using recursive streams are too expensive or unable to preserve reproducibility. [1]
keccak("secret base", bits = 384L)
#> [1] "c82bae24175676028e44aa08b9e2424311847adb0b071c68c7ea47edf049b0e935ddd2fc7c499333bccc08c7eb7b1203"
sha256("secret base")
#> [1] "1951c1ca3d50e95e6ede2b1c26fefd0f0e8eba1e51a837f8ccefb583a2b686fe"
For SHA-256 HMAC, pass to key
a character string or raw
vector:
sha256("secret base", key = "秘密の基地の中")
#> [1] "ec58099ab21325e792bef8f1aafc0a70e1a7227463cfc410931112705d753392"
SipHash-1-3 is optimized for performance. Pass to key
a
character string or raw vector of up to 16 bytes (128 bits):
siphash13("secret base", key = "秘密の基地の中")
#> [1] "a1f0a751892cc7dd"
Strings:
base64enc("secret base")
#> [1] "c2VjcmV0IGJhc2U="
base64dec(base64enc("secret base"))
#> [1] "secret base"
Raw vectors:
base64enc(as.raw(c(1L, 2L, 4L)), convert = FALSE)
#> [1] 41 51 49 45
base64dec(base64enc(as.raw(c(1L, 2L, 4L))), convert = FALSE)
#> [1] 01 02 04
Serialized objects:
base64enc(data.frame())
#> [1] "WAoAAAADAAQEAgADBQAAAAAFVVRGLTgAAAMTAAAAAAAABAIAAAABAAQACQAAAAVuYW1lcwAAABAAAAAAAAAEAgAAAAEABAAJAAAACXJvdy5uYW1lcwAAAA0AAAAAAAAEAgAAAAEABAAJAAAABWNsYXNzAAAAEAAAAAEABAAJAAAACmRhdGEuZnJhbWUAAAD+"
base64dec(base64enc(data.frame()), convert = NA)
#> data frame with 0 columns and 0 rows
Install the latest release from CRAN:
install.packages("secretbase")
The current development version is available from R-universe:
install.packages("secretbase", repos = "https://shikokuchuo.r-universe.dev")
The SHA-3 Secure Hash Standard was published by the National Institute of Standards and Technology (NIST) in 2015 at doi:10.6028/NIST.FIPS.202. SHA-3 is based on the Keccak algorithm, designed by G. Bertoni, J. Daemen, M. Peeters and G. Van Assche.
The SHA-256 Secure Hash Standard was published by NIST in 2002 at https://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.
The SHA-256, SHA-3, Keccak, and base64 implementations are based on those by the ‘Mbed TLS’ Trusted Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.
The SipHash family of pseudo-random functions by Jean-Philippe Aumasson and Daniel J. Bernstein was published in 2012 at https://ia.cr/2012/351. [2]
The SipHash implementation is based on that of Daniele Nicolodi, David Rheinsberg and Tom Gundersen at https://github.com/c-util/c-siphash, which is in turn based on the reference implementation by Jean-Philippe Aumasson and Daniel J. Bernstein released to the public domain at https://github.com/veorq/SipHash.
[1] Pierre L’Ecuyer, David Munger, Boris Oreshkin and Richard Simard (2017), “Random numbers for parallel computers: Requirements and methods, with emphasis on GPUs”, Mathematics and Computers in Simulation, Vol. 135, May 2017, pp. 3-17 doi:10.1016/j.matcom.2016.05.00.
[2] Jean-Philippe Aumasson and Daniel J. Bernstein (2012), “SipHash: a fast short-input PRF”, Paper 2012/351, Cryptology ePrint Archive, https://ia.cr/2012/351.
◈ secretbase R package: https://shikokuchuo.net/secretbase/
Mbed TLS website: https://www.trustedfirmware.org/projects/mbed-tls
SipHash streaming implementation: https://github.com/c-util/c-siphash
SipHash
reference implementation: https://github.com/veorq/SipHash
–
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.