The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
We introduced parameters plot_constant
and
x_axis
to the visualisation functions of the package. These
enable the option to plot constant FoI estimates and their corresponding
r-hat values, avoiding ambiguity in the specification of the x-axis by
means of x_axis = "time"
or
x_axis = "age"
.
foi_models
to show the prior
specification options available in the package.foi_models
seroprevalence_
and seropositive_
for seroprev_
probability_
for prob_
_model
README
lintr v3.2.0
new suggestionsHmisc
dependency.Matrix
package for expm
donttest
to examples taking too long to runsf_normal()
and
sf_uniform()
.simdata_*
datasets from the package and
replaced them with code-based simulation in vignettes.fit_seromodel()
function (#213).build_stan_data
and related functions (#232).foi_sim_constant <- rep(0.02, 50)
serodata_constant <- generate_sim_data(
sim_data = data.frame(
age = seq(1, 50),
tsur = 2050),
foi = foi_sim_constant,
sample_size_by_age = 5
)
To generate grouped serosurveys the function
group_sim_data
can be used:
serodata_constant <- group_sim_data(serodata_constant, step = 5)
Simplifies fit_seromodel
output
fit_seromodel
was a list: seromodel_object <- list(
fit = fit,
seromodel_fit = seromodel_fit,
serodata = serodata,
serodata = serodata,
stan_data = stan_data,
...
)
stan_fit
object as obtained from
rstan::sampling
.
Because of this, some plotting functionalities now require
serodata
as an input.Initial prior distribution parameters foi_location
and foi_scale
can be specified explicitly in
fit_seromodel
:
seromodel <- fit_seromodel(
serodata,
foi_model = "tv_normal",
foi_location = 0,
foi_scale = 1
)
Depending on the selected model foi_model
, the meaning
of the parameters change. For the tv_normal_log
model these
parameters must be in logarithmic scale; the recommended usage is:
seromodel <- fit_seromodel(
serodata,
foi_model = "tv_normal_log",
foi_location = -6,
foi_scale = 4
)
Chunks structure specification is now possible
data(chagas2012)
serodata <- prepare_serodata(chagas2012)
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal")
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal", chunk_size = 10)
or explicitly:
chunks <- rep(c(1, 2, 3, 4, 5), c(10, 10, 15, 15, max(serodata$age_mean_f)-50))
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal", chunks = chunks)
run_seromodel
. Initially
this function was intended to be a handler for
fit_seromodel
for cases when the user may need to implement
the same model to multiple independent serosurveys; now we plan to
showcase examples of this using the current functionalities of the
package (to be added in future versions to the vignettes).plot_seroprev
allows for data binning (age group
manipulation) by means of parameters bin_data=TRUE
and
bin_step
.ymin
and ymax
aesthetics plotting functions (with the exception of
plot_rhats
).veev2012
datasetRemove large files from git history (see #77).
Added input validation for the following functions:
prepare_serodata
generate_sim_data
get_age_group
fit_seromodel
extract_seromodel_summary
plot_seroprev
plot_seroprev_fitted
plot_foi
plot_seromodel
Unit testing:
dplyr::near
to test models statistical
validityUpdate package template in accordance to {packagetemplate}
This release of serofoi, includes the following:
Overall, this release introduces essential package functionality, comprehensive documentation, various FoI models, and a coverage test, enabling users to analyse seroprevalence data and calculate the Force-of-infection.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.