The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This is section will go more depth into the structure of sftrack/sftraj objects and how to work with them.
To begin, sftrack
and sftraj
objects are essentially data.frame objects with the 3 required columns (group, geometry, and time). However, they are also of the subclass sf
. This allows them to act like sf objects when working with functions in the sf
package but act as sftrack
objects for all other actions. It should be noted that when possible sftrack objects will mimic sf
functionality and thus many of the same words and tactics are used.
library("sftrack")
# Make tracks from raw data
data("raccoon", package = "sftrack")
#raccoon <- read.csv(system.file("extdata/raccoon_data.csv", package="sftrack"))
$month <- as.POSIXlt(raccoon$timestamp)$mon + 1
raccoon
$time <- as.POSIXct(raccoon$timestamp, tz = "EST")
raccoon c("longitude","latitude")
coords <- list(id = raccoon$animal_id, month = as.POSIXlt(raccoon$timestamp)$mon+1)
group <- "time"
time <- "fix"
error <- 4326
crs <-# create a sftrack object
as_sftrack(data = raccoon, coords = coords, group = group, time = time, error = error, crs = crs)
my_sftrack <-
# create a sftraj object
as_sftraj(data = raccoon, coords = coords, group = group, time = time, error = error, crs = crs) my_sftraj <-
In order for sftrack
to function as an sf
object, we create the data object as an sf
object first (using st_as_sf()), and then add the sftrack
attributes to the object. The class of an sftrack object is sftrack
-> sf
-> data.frame
although the data.frame class is rarely called upon.
There are five attributes total to an sftrack
object, two of these are created by sf
(sf_column
and agr
), and the additional three are created by sftrack
(group_col
, time_col
, and error_col
).
attributes(my_sftrack)[-(1:2)]
## $class
## [1] "sftrack" "sf" "data.frame"
##
## $sf_column
## [1] "geometry"
##
## $agr
## animal_id latitude longitude timestamp height hdop vdop fix
## <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## month time sft_group
## <NA> <NA> <NA>
## Levels: constant aggregate identity
##
## $group_col
## [1] "sft_group"
##
## $time_col
## [1] "time"
##
## $error_col
## [1] "fix"
The sftrack
level attributes are simply pointers to the data. Any attributes relevant to the grouping or geometry are stored in those columns themselves.
The geometry column is an sfc
object and contains the important spatial information for the track. As NA points are common and important in movement data, we create the sfc
object with the option na.fail = TRUE
.
$geometry my_sftrack
## Geometry set for 445 features (with 168 geometries empty)
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: -80.28149 ymin: 26.06761 xmax: -80.27046 ymax: 26.07706
## Geodetic CRS: WGS 84
## First 5 geometries:
## POINT EMPTY
## POINT (-80.27906 26.06945)
## POINT EMPTY
## POINT EMPTY
## POINT (-80.27431 26.06769)
The sfc
column varies in structure dependent on the movement class. An sftrack
is a collection of POINTs
while an sftraj
is a GEOMETRY
collection of POINTs
and LINESTRINGs
.
data.frame(
df1 <-id = c(1, 1, 1, 1,1,1),
month = c(1,1,1,1,1,1),
x = c(27, 27, 27, NA,29,30),
y = c(-80,-81,-82,NA, 83,83),
timez = as.POSIXct("2020-01-01 12:00:00", tz = "UTC") + 60*60*(1:6)
)
as_sftraj(data = df1, group = list(id = df1$id, month = df1$month),
test_sftraj <-time = df1$timez, active_group = c("id","month"), coords = df1[,c("x","y")])
$geometry test_sftraj
## Geometry set for 6 features (with 1 geometry empty)
## Geometry type: GEOMETRY
## Dimension: XY
## Bounding box: xmin: 27 ymin: -82 xmax: 30 ymax: 83
## CRS: NA
## First 5 geometries:
## LINESTRING (27 -80, 27 -81)
## LINESTRING (27 -81, 27 -82)
## POINT (27 -82)
## POINT EMPTY
## LINESTRING (29 83, 30 83)
The grouping column is very specialized, and we will cover it in its own section. To begin, the novel attributes it stores are the active_group
and the sort_index
which is a factor of the current active groups. The grouping class consists of single row level group: s_groups
(a.k.a single groups) and a column level collection of s_groups called a c_grouping
(a.k.a column/collection grouping). This column acts as a robust storage column for the groupings and is maintained across a sftrack
object.
attributes(my_sftrack$sft_group[1:10])
## $active_group
## [1] "id" "month"
##
## $sort_index
## [1] TTP-058_1 TTP-058_1 TTP-058_1 TTP-058_1 TTP-058_1 TTP-058_1 TTP-058_1
## [8] TTP-058_1 TTP-058_1 TTP-058_1
## Levels: TTP-058_1
##
## $class
## [1] "c_grouping"
summary(my_sftrack)
## animal_id latitude longitude
## Length:445 Min. :26.07 Min. :-80.28
## Class :character 1st Qu.:26.07 1st Qu.:-80.28
## Mode :character Median :26.07 Median :-80.28
## Mean :26.07 Mean :-80.28
## 3rd Qu.:26.07 3rd Qu.:-80.28
## Max. :26.08 Max. :-80.27
## NA's :168 NA's :168
## timestamp height hdop
## Min. :2019-01-19 00:02:30.00 Min. : -30.00 Min. :0.000
## 1st Qu.:2019-01-22 07:02:30.00 1st Qu.: 1.00 1st Qu.:0.000
## Median :2019-01-25 23:02:30.00 Median : 7.00 Median :1.300
## Mean :2019-01-25 22:22:18.39 Mean : 36.65 Mean :1.691
## 3rd Qu.:2019-01-29 07:02:09.00 3rd Qu.: 15.50 3rd Qu.:2.500
## Max. :2019-02-01 23:02:30.00 Max. :1107.00 Max. :9.900
## NA's :198
## vdop fix month time
## Min. :0.000 2D: 37 Min. :1.000 Min. :2019-01-19 00:02:30.00
## 1st Qu.:0.000 3D:240 1st Qu.:1.000 1st Qu.:2019-01-22 07:02:30.00
## Median :1.900 NO:168 Median :1.000 Median :2019-01-25 23:02:30.00
## Mean :1.938 Mean :1.067 Mean :2019-01-25 22:22:18.39
## 3rd Qu.:3.200 3rd Qu.:1.000 3rd Qu.:2019-01-29 07:02:09.00
## Max. :8.400 Max. :2.000 Max. :2019-02-01 23:02:30.00
##
## sft_group geometry
## TTP-041_1 :208 POINT :445
## TTP-041_2 : 15 epsg:4326 : 0
## TTP-058_1 :207 +proj=long...: 0
## TTP-058_2 : 15
## active_group: id, month: 0
##
##
The time column must be either an integer or POSIXct and the column must be of one type of time. Beyond that there is not much specialized functionality in the column. Sftrack uses the time column to order outputs for analysis, and attempts to order outputs when originally making an sftrack object, however, the data.frame is not required to be ordered for analysis. A call to check_ordered()
is called before analysis, and otherwise it is assumed the order does not matter. This is particularly true for a sftraj, where the geometry level contains information about t1 and t2.
The error column is the column with the relevant error information for the spatial points in it. At present we have not built particular functionality but plan to in the future or reserve this for other developers to build upon.
An sftrack object acts like a data.frame and sf whenever appropriate. Because of this you can subset an sftrack object as you would a data.frame.
In this way row subsetting is very straight forward, as each row represents an individual point in time.
1:10,] my_sftrack[
## Sftrack with 10 features and 12 fields (4 empty geometries)
## Geometry : "geometry" (XY, crs: WGS 84)
## Timestamp : "time" (POSIXct in UTC)
## Groupings : "sft_group" (*id*, *month*)
## -------------------------------
## animal_id latitude longitude timestamp height hdop vdop fix month
## 1 TTP-058 NA NA 2019-01-19 00:02:30 NA 0.0 0.0 NO 1
## 2 TTP-058 26.06945 -80.27906 2019-01-19 01:02:30 7 6.2 3.2 2D 1
## 3 TTP-058 NA NA 2019-01-19 02:02:30 NA 0.0 0.0 NO 1
## 4 TTP-058 NA NA 2019-01-19 03:02:30 NA 0.0 0.0 NO 1
## 5 TTP-058 26.06769 -80.27431 2019-01-19 04:02:30 858 5.1 3.2 2D 1
## 6 TTP-058 26.06867 -80.27930 2019-01-19 05:02:30 350 1.9 3.2 3D 1
## 7 TTP-058 26.06962 -80.27908 2019-01-19 06:02:30 11 2.3 4.5 3D 1
## 8 TTP-058 26.06963 -80.27902 2019-01-19 07:02:04 9 2.7 3.9 3D 1
## 9 TTP-058 NA NA 2019-01-19 08:02:30 NA 0.0 0.0 NO 1
## 10 TTP-058 26.06982 -80.27900 2019-01-19 17:02:30 NA 2.0 3.3 3D 1
## time sft_group geometry
## 1 2019-01-19 00:02:30 (id: TTP-058, month: 1) POINT EMPTY
## 2 2019-01-19 01:02:30 (id: TTP-058, month: 1) POINT (-80.27906 26.06945)
## 3 2019-01-19 02:02:30 (id: TTP-058, month: 1) POINT EMPTY
## 4 2019-01-19 03:02:30 (id: TTP-058, month: 1) POINT EMPTY
## 5 2019-01-19 04:02:30 (id: TTP-058, month: 1) POINT (-80.27431 26.06769)
## 6 2019-01-19 05:02:30 (id: TTP-058, month: 1) POINT (-80.2793 26.06867)
## 7 2019-01-19 06:02:30 (id: TTP-058, month: 1) POINT (-80.27908 26.06962)
## 8 2019-01-19 07:02:04 (id: TTP-058, month: 1) POINT (-80.27902 26.06963)
## 9 2019-01-19 08:02:30 (id: TTP-058, month: 1) POINT EMPTY
## 10 2019-01-19 17:02:30 (id: TTP-058, month: 1) POINT (-80.279 26.06982)
Unlike a data.frame, however, sftrack attempts to retain the geometry, group, and time columns, in order to maintain sftrack status. This is similar to how sf
deals with the geometry column.
1:3,c(1:3)] my_sftrack[
## Sftrack with 3 features and 7 fields (2 empty geometries)
## Geometry : "geometry" (XY, crs: WGS 84)
## Timestamp : "time" (POSIXct in UTC)
## Groupings : "sft_group" (*id*, *month*)
## -------------------------------
## animal_id latitude longitude sft_group time fix
## 1 TTP-058 NA NA (id: TTP-058, month: 1) 2019-01-19 00:02:30 NO
## 2 TTP-058 26.06945 -80.27906 (id: TTP-058, month: 1) 2019-01-19 01:02:30 2D
## 3 TTP-058 NA NA (id: TTP-058, month: 1) 2019-01-19 02:02:30 NO
## geometry
## 1 POINT EMPTY
## 2 POINT (-80.27906 26.06945)
## 3 POINT EMPTY
To turn off this feature, use the drop = TRUE
argument which returns a data.frame object instead. If you would like to revert to an sf object, sf::st_sf(data)
will return the object to an sf
object.
1:3,c(1:3), drop = TRUE] my_sftrack[
## animal_id latitude longitude
## 1 TTP-058 NA NA
## 2 TTP-058 26.06945 -80.27906
## 3 TTP-058 NA NA
sftraj
s work nearly the same as sftrack
s, however because they are a step model where the steps are modeled as step1 (t1 ->t2) its important to note that subsetting will not automatically recalculate any new steps for you even if the original t2 point has been deleted.
If your subsetting will also change the end points for steps, then you can recalculate using step_recalc()
. The output which is your original sftraj object but with the geometry column recalculated to the new t2s based on the timestamp. The results of which can be wildly different than the original subsetted data.frame. So be careful.
plot(my_sftraj, main = "Original")
my_sftraj[seq(10, nrow(my_sftraj), 10), ]
new_traj <-
plot(new_traj, main = "Before recalculation")
plot(step_recalc(new_traj), main = "After recalculation")
The print()
layout is a modified version of the sf
print function. It returns important info summarazing the sftrack object like the geometry information and burst information. The print function defaults to printing 1000 rows and displaying all the columns. This can be modified using the n_row
and n_col
arguments, which subset the printed output in the repsective axis. When using n_col
the display will show the grouping
geometry
, and time
fields as well as any other columns starting from column 1 until #columns + 3 = n_col. n_col
and n_row
are optional arguments, and if values are not supplied they default to the data.frame defaults. Note : n_row
is not a corrolary to head()
, as head()
physically subsets the data while the n_row
option just modifies the printed output.
If
print(my_sftrack, 5, 10)
## Sftrack with 445 features and 12 fields (168 empty geometries)
## Geometry : "geometry" (XY, crs: WGS 84)
## Timestamp : "time" (POSIXct in UTC)
## Groupings : "sft_group" (*id*, *month*)
## -------------------------------
## animal_id latitude longitude timestamp height hdop vdop fix month
## 1 TTP-058 NA NA 2019-01-19 00:02:30 NA 0.0 0.0 NO 1
## 2 TTP-058 26.06945 -80.27906 2019-01-19 01:02:30 7 6.2 3.2 2D 1
## 3 TTP-058 NA NA 2019-01-19 02:02:30 NA 0.0 0.0 NO 1
## 4 TTP-058 NA NA 2019-01-19 03:02:30 NA 0.0 0.0 NO 1
## 5 TTP-058 26.06769 -80.27431 2019-01-19 04:02:30 858 5.1 3.2 2D 1
## time sft_group geometry
## 1 2019-01-19 00:02:30 (id: TTP-058, month: 1) POINT EMPTY
## 2 2019-01-19 01:02:30 (id: TTP-058, month: 1) POINT (-80.27906 26.06945)
## 3 2019-01-19 02:02:30 (id: TTP-058, month: 1) POINT EMPTY
## 4 2019-01-19 03:02:30 (id: TTP-058, month: 1) POINT EMPTY
## 5 2019-01-19 04:02:30 (id: TTP-058, month: 1) POINT (-80.27431 26.06769)
summary()
works as youd expect for a data.frame, except it displays the grouping column as a count of each active_group combination and the active_group
for that column.
summary(my_sftrack)
## animal_id latitude longitude
## Length:445 Min. :26.07 Min. :-80.28
## Class :character 1st Qu.:26.07 1st Qu.:-80.28
## Mode :character Median :26.07 Median :-80.28
## Mean :26.07 Mean :-80.28
## 3rd Qu.:26.07 3rd Qu.:-80.28
## Max. :26.08 Max. :-80.27
## NA's :168 NA's :168
## timestamp height hdop
## Min. :2019-01-19 00:02:30.00 Min. : -30.00 Min. :0.000
## 1st Qu.:2019-01-22 07:02:30.00 1st Qu.: 1.00 1st Qu.:0.000
## Median :2019-01-25 23:02:30.00 Median : 7.00 Median :1.300
## Mean :2019-01-25 22:22:18.39 Mean : 36.65 Mean :1.691
## 3rd Qu.:2019-01-29 07:02:09.00 3rd Qu.: 15.50 3rd Qu.:2.500
## Max. :2019-02-01 23:02:30.00 Max. :1107.00 Max. :9.900
## NA's :198
## vdop fix month time
## Min. :0.000 2D: 37 Min. :1.000 Min. :2019-01-19 00:02:30.00
## 1st Qu.:0.000 3D:240 1st Qu.:1.000 1st Qu.:2019-01-22 07:02:30.00
## Median :1.900 NO:168 Median :1.000 Median :2019-01-25 23:02:30.00
## Mean :1.938 Mean :1.067 Mean :2019-01-25 22:22:18.39
## 3rd Qu.:3.200 3rd Qu.:1.000 3rd Qu.:2019-01-29 07:02:09.00
## Max. :8.400 Max. :2.000 Max. :2019-02-01 23:02:30.00
##
## sft_group geometry
## TTP-041_1 :208 POINT :445
## TTP-041_2 : 15 epsg:4326 : 0
## TTP-058_1 :207 +proj=long...: 0
## TTP-058_2 : 15
## active_group: id, month: 0
##
##
summary_sftrack()
is a special summary function specific for sftrack objects. It summarizes the data based on the beginning and end of each grouping as well as the total distance of the grouping. This function uses st_distance
from the sf
package and therefore outputs in units of the CRS. In this example the distance is in meters.
summary_sftrack(my_sftrack)
## group points NAs begin_time end_time length_m
## 1 TTP-041_1 208 0 2019-01-19 00:02:30 2019-01-31 23:02:30 10125.58779
## 2 TTP-041_2 15 0 2019-02-01 00:02:30 2019-02-01 23:02:07 32.28359
## 3 TTP-058_1 207 0 2019-01-19 00:02:30 2019-01-31 23:02:30 24724.31991
## 4 TTP-058_2 15 0 2019-02-01 00:02:30 2019-02-01 23:02:30 1927.07818
You can also trigger this function by using summary(data, stats = TRUE)
summary(my_sftrack, stats = TRUE)
## group points NAs begin_time end_time length_m
## 1 TTP-041_1 208 0 2019-01-19 00:02:30 2019-01-31 23:02:30 10125.58779
## 2 TTP-041_2 15 0 2019-02-01 00:02:30 2019-02-01 23:02:07 32.28359
## 3 TTP-058_1 207 0 2019-01-19 00:02:30 2019-01-31 23:02:30 24724.31991
## 4 TTP-058_2 15 0 2019-02-01 00:02:30 2019-02-01 23:02:30 1927.07818
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.