The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Updating Source in Shiny

A common scenario when using shinyCohortBuilder in custom Shiny application is to allow a user to switch between multiple data sources.

Such scenario takes place when you:

  1. Use different version of your data:
  1. Use different types of data that may differ in structure:

The goal of this document is to explain how shinyCohortBuilder can be used in the two scenarios.

Whenever you use different data in your Shiny application you should use cohortBuilder::update_source method to update underlying data.

The method not only replaces Source in the Cohort object, but also triggers set of specific operations in filtering panel.

The operations depends on the way you store filters configuration and extra options passed to the method.

Below we describe two most common solutions when dealing with the above scenarios.

Consistent data

When working with consistent datasets you usually want to keep filtering panel unchanged for each data version. In this situation:

  1. Configure filtering steps only once when initializing cohort.
  2. When updating source, use update_source(cohort_object, keep_steps = TRUE).

As a result:

Below application presents the described approach:

library(shiny)
library(cohortBuilder)
library(shinyCohortBuilder)

mtcars_list = list(
  "0" = dplyr::filter(mtcars, am == 0),
  "1" = dplyr::filter(mtcars, am == 1)
)

ui <- fluidPage(
  sidebarLayout(
    sidebarPanel(
      radioButtons("version", "Version", choices = c("0", "1")),
      cb_ui("mtcars")
    ),
    mainPanel(
      verbatimTextOutput("cohort_data")
    )
  )  
)

server <- function(input, output, session) {
  init_source <- set_source(tblist(mtcars = mtcars_list[["0"]]))
  mt_cohort <- cohort(
    init_source,
    filter("range", id = "mpg", dataset = "mtcars", variable = "mpg", active = FALSE),
    filter("range", id = "qsec", dataset = "mtcars", variable = "qsec", active = FALSE)
  )
  
  cb_server("mtcars", mt_cohort)
  
  observeEvent(input$version, {
    new_source <- set_source(tblist(mtcars = mtcars_list[[input$version]]))
    update_source(mt_cohort, new_source, keep_steps = TRUE)
  })
}

shinyApp(ui, server)

Inconsistent data

When filters configuration is different across multiple data sources you want to render the filtering panel from scratch every time the source is updated. In this scenario:

  1. Keep filtering steps configuration within a source.
  2. When updating source, use update_source(cohort_object, keep_steps = FALSE).

As a result:

Below application presents the described approach:

library(shiny)
library(cohortBuilder)
library(shinyCohortBuilder)

source_mtcars <- set_source(
  tblist(mtcars = mtcars),
  filter("range", id = "mpg", dataset = "mtcars", variable = "mpg", active = FALSE),
  filter("range", id = "qsec", dataset = "mtcars", variable = "qsec", active = FALSE)
)

source_iris <- set_source(
  tblist(iris = iris),
  filter("discrete", id = "species", dataset = "iris", variable = "Species", active = FALSE),
  filter("range", id = "petal_length", dataset = "iris", variable = "Petal.length", active = FALSE)
)

ui <- fluidPage(
  sidebarLayout(
    sidebarPanel(
      radioButtons("dataset", "Dataset", choices = c("mtcars", "iris")),
      cb_ui("data_panel")
    ),
    mainPanel(
      verbatimTextOutput("cohort_data")
    )
  )  
)

server <- function(input, output, session) {
  cohort_object <- cohort(source_mtcars)
  cb_server("data_panel", cohort_object)
  
  observeEvent(input$dataset, {
    if (input$dataset = "mtcars") {
      update_source(cohort_object, source_mtcars, keep_steps = FALSE)  
    }
    if (input$dataset = "iris") {
      update_source(cohort_object, source_iris, keep_steps = FALSE)  
    }
  })
}

shinyApp(ui, server)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.