The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette quickly outlines the primary method calls for conducting an analysis of an Interrupted Time Series using the simulation approach proposed in the companion paper.
We first cover a simple regression model, then show how to do smoothing, then seasonality. We also make a brief note about generating fake data for the purposes of conducting simulation studies.
We use the raw Mecklenberg data to illustrate the simITS package.
data(mecklenberg)
head( mecklenberg )
#> # A tibble: 6 x 10
#> month karr pbail pptrel pror pb4c avg_days_initial avg_t2d pstint7 pstint30
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -29 2450 0.661 0.0347 0.304 0.634 11.4 193. 0.204 0.0820
#> 2 -28 2518 0.668 0.0365 0.295 0.636 9.96 188. 0.156 0.0564
#> 3 -27 2501 0.641 0.0424 0.317 0.628 9.68 191. 0.158 0.0636
#> 4 -26 2472 0.646 0.0376 0.316 0.649 13.9 183. 0.174 0.0781
#> 5 -25 2628 0.664 0.0438 0.293 0.655 12.8 184. 0.211 0.0799
#> 6 -24 2629 0.647 0.0312 0.322 0.697 10.1 193. 0.169 0.0677
meck = mutate( mecklenberg, pbail = 100 * pbail )
ggplot( meck, aes( x=month, y=pbail)) +
geom_rect(aes( ymin=-Inf, ymax=Inf, xmin=0.5, xmax=25, fill="lightgray"), col = "lightgray", alpha=0.25) +
scale_fill_identity(name = "", guide = "none", labels = c('Post Policy era')) +
geom_hline( yintercept = 0, col="black") +
geom_line( col="black", lty=1, lwd=0.5) +
geom_point() +
scale_x_continuous( breaks = c(-29,-24,-18,-12,-6,1,6,12,18,24)) +
coord_cartesian(xlim=c(-29.5,24.5), ylim=c(0,100), expand=FALSE) +
labs( title = " ", y = "Percent cases assigned bail", x = " " )
To have autoregressive errors we use lagged outcomes. We can add lagged outcomes (and covariates) as so:
meck = add_lagged_covariates( meck, outcomename = "pbail", covariates=NULL )
sample_n( meck, 5 ) %>% arrange( month )
#> # A tibble: 5 x 11
#> month karr pbail pptrel pror pb4c avg_days_initial avg_t2d pstint7 pstint30
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -19 2262 64.2 0.0385 0.320 0.757 11.5 189. 0.175 0.0637
#> 2 -4 1938 62.2 0.0289 0.349 0.686 8.94 216. 0.155 0.0599
#> 3 7 2061 50.1 0.0359 0.463 0.585 7.83 208. 0.154 0.0456
#> 4 18 1850 52.1 0.0319 0.448 0.588 7.75 161. 0.165 0.0551
#> 5 22 1993 49.4 0.0311 0.475 0.549 6.10 150. 0.127 0.0426
#> # … with 1 more variable: lag.outcome <dbl>
This package passes functions for fitting the model, and then uses these functions for doing the extrapolation. For the default, we use the package’s fit_model_default()
which is a simple line (with lagged outcome as a covariate):
meck.pre = filter( meck, month <= 0 )
mod = fit_model_default( meck.pre, "pbail" )
summary( mod )
#>
#> Call:
#> stats::lm(formula = stats::as.formula(form), data = dat[-c(1),
#> ])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -3.7374 -1.6059 -0.2528 1.3190 4.6280
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 44.99557 11.73346 3.835 0.000718 ***
#> month -0.12320 0.05526 -2.229 0.034642 *
#> lag.outcome 0.26357 0.19033 1.385 0.177875
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 2.094 on 26 degrees of freedom
#> Multiple R-squared: 0.3575, Adjusted R-squared: 0.3081
#> F-statistic: 7.234 on 2 and 26 DF, p-value: 0.003178
To run the entire simulation and extrapolation as a call, we can directly do:
t0 = 0
envelope = process_outcome_model( "pbail", meck,
t0=t0, R = 100,
summarize = TRUE, smooth=FALSE )
sample_n( envelope, 5 ) %>% arrange( month )
#> # A tibble: 5 x 10
#> month Ymin Ymax range SE Ystar Y Ysmooth Ysmooth1 Ybar
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <lgl> <dbl>
#> 1 -14 59.9 59.9 0 0 59.9 59.9 NA NA 63.5
#> 2 -3 62.5 62.5 0 0 62.5 62.5 NA NA 61.7
#> 3 6 53.3 64.9 11.5 2.98 60.3 47.1 NA NA 60.2
#> 4 16 53.0 63.9 10.8 3.39 58.4 49.1 NA NA 58.6
#> 5 18 51.3 63.8 12.5 3.20 58.0 52.1 NA NA 58.2
And plotting our results:
ggplot( envelope, aes( month ) ) +
geom_line( aes( y=Y ), alpha = 0.6 ) + # original data
geom_point( aes( y=Y ) ) + # original data
geom_ribbon( aes( ymin=Ymin, ymax=Ymax ), alpha=0.2 ) +
geom_line( aes( y = Ystar ), col="darkgrey" ) +
geom_vline( xintercept = t0+0.5)
We provide a nice utility function to generate these graphs:
We can aggregate impacts for several time points as follows. First call process_outcome_model()
without summarizing:
predictions = process_outcome_model( "pbail", meck,
t0=t0, R = 100,
summarize = FALSE, smooth=FALSE )
Then use aggregate_simulation_results()
:
sstat = aggregate_simulation_results( orig.data = meck, outcomename = "pbail",
predictions = predictions, months = 1:18 )
quantile( sstat$t, c( 0.025, 0.975 ))
#> 2.5% 97.5%
#> 57.06750 62.40886
sstat$t.obs
#> [1] 52.0368
sstat$t.obs - quantile( sstat$t, c( 0.025, 0.975 ))
#> 2.5% 97.5%
#> -5.030692 -10.372056
For simulation we also offer a fake data generator. It works like this:
Here we demonstrate summarizing and smoothing, using the fake data we just generated.
envelope = process_outcome_model( "Y", dat, t0=t0, R = 100,
summarize = TRUE, smooth=TRUE )
make_envelope_graph(envelope, t0 )
We can smooth to different degrees using the smooth_k
parameter:
alphas = c( 6, 11, 20, 100 )
preds = purrr::map( alphas, function( alpha ) {
pds = process_outcome_model( "Y", dat,
t0=t0, R = 20,
summarize = FALSE, smooth=TRUE,
smooth_k = alpha )
pds
} )
names( preds ) = alphas
preds = bind_rows( preds, .id="alpha_k" )
ggplot( filter( preds, month >= t0 ), aes( month, Ysmooth ) ) +
facet_wrap( ~ alpha_k ) +
geom_line( aes( group=Run, col=alpha_k ), alpha=0.5, na.rm=TRUE) +
geom_line( data=dat, aes( month, Y ), col="black", alpha=0.5 ) +
geom_vline( xintercept=t0, col="red" ) +
labs( x="month", y="proportion given bail")
A seasonality model on some fake data with a strong seasonality component is easy to fit. You just construct some code to fit the seasonality model via the make_fit_season_model()
factory (you need to have the covariates pre-constructed in your data):
data( newjersey )
fit_season_model_qtemp = make_fit_season_model( ~ temperature + Q2 + Q3 + Q4 )
envelope = process_outcome_model( "n.warrant", newjersey, t0=-7, R = 100,
summarize = TRUE, smooth=TRUE,
fit_model = fit_season_model_qtemp )
make_envelope_graph( envelope, t0=-7 )
Note how it will construct the lagged covariates automatically. The make_fit_season_model()
method records what covariates are needed from the passed formula.
We can smooth around a seasonality model either with a default smoother made from the specified seasonality model (as was done above) or, like the following, with a specified one of your choice:
smoother = make_model_smoother( fit_model = fit_season_model_sin, covariates = newjersey )
envelope_sin = process_outcome_model( "n.warrant", newjersey, t0=-7, R = 100,
summarize = TRUE, smooth=TRUE, smoother = smoother, smooth_k = 11,
fit_model = fit_season_model_qtemp )
envelope_sin$Ysmooth.base = envelope$Ysmooth
envelope_sin$Ysmooth1.base = envelope$Ysmooth1
make_envelope_graph( filter( envelope_sin, month > -30 ), t0=-7 ) +
geom_line( aes( y=Ysmooth.base ), col="blue", na.rm=TRUE ) +
geom_line( aes( y=Ysmooth1.base ), col="blue", lty=2, na.rm=TRUE )
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.