The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette shows examples for using tab_model()
to
create HTML tables for mixed models. Basically, tab_model()
behaves in a very similar way for mixed models as for other, simple
regression models, as shown in this
vignette.
# load required packages
library(sjPlot)
library(lme4)
data("sleepstudy")
data("efc")
efc$cluster <- as.factor(efc$e15relat)
Unlike tables for non-mixed
models, tab_models()
adds additional information on the
random effects to the table output for mixed models. You can hide these
information with show.icc = FALSE
and
show.re.var = FALSE
. Furthermore, the R-squared values are
marginal and conditional R-squared statistics, based on Nakagawa et
al. 2017.
m1 <- lmer(neg_c_7 ~ c160age + c161sex + e42dep + (1 | cluster), data = efc)
m2 <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
tab_model(m1, m2)
Negative impact with 7 items |
Reaction | |||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Estimates | CI | p |
(Intercept) | 6.55 | 4.86 – 8.23 | <0.001 | 251.41 | 237.94 – 264.87 | <0.001 |
carer’age | -0.00 | -0.03 – 0.02 | 0.802 | |||
carer’s gender | 0.47 | -0.08 – 1.02 | 0.094 | |||
elder’s dependency | 1.45 | 1.19 – 1.71 | <0.001 | |||
Days | 10.47 | 7.42 – 13.52 | <0.001 | |||
Random Effects | ||||||
σ2 | 12.61 | 654.94 | ||||
τ00 | 0.50 cluster | 612.10 Subject | ||||
τ11 | 35.07 Subject.Days | |||||
ρ01 | 0.07 Subject | |||||
ICC | 0.04 | 0.72 | ||||
N | 8 cluster | 18 Subject | ||||
Observations | 888 | 180 | ||||
Marginal R2 / Conditional R2 | 0.127 / 0.160 | 0.279 / 0.799 |
The marginal R-squared considers only the variance of the fixed effects, while the conditional R-squared takes both the fixed and random effects into account.
The p-value is a simple approximation, based on the t-statistics and
using the normal distribution function. A more precise p-value can be
computed using p.val = "kr"
. In this case, which only
applies to linear mixed models, the computation of p-values is based on
conditional F-tests with Kenward-Roger approximation for the degrees of
freedom (using the using the pbkrtest-package). Note
that here the computation is more time consuming and thus not used as
default. You can also display the approximated degrees of freedom with
show.df
.
Negative impact with 7 items |
||||
---|---|---|---|---|
Predictors | Estimates | CI | p | df |
(Intercept) | 6.55 | 4.82 – 8.28 | <0.001 | 136.86 |
carer’age | -0.00 | -0.03 – 0.02 | 0.810 | 255.72 |
carer’s gender | 0.47 | -0.08 – 1.02 | 0.095 | 881.58 |
elder’s dependency | 1.45 | 1.19 – 1.71 | <0.001 | 883.58 |
Random Effects | ||||
σ2 | 12.61 | |||
τ00 cluster | 0.50 | |||
ICC | 0.04 | |||
N cluster | 8 | |||
Observations | 888 | |||
Marginal R2 / Conditional R2 | 0.127 / 0.160 |
tab_model()
can also print and combine models with
different link-functions.
data("efc")
efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1)
efc$cluster <- as.factor(efc$e15relat)
m3 <- glmer(
neg_c_7d ~ c160age + c161sex + e42dep + (1 | cluster),
data = efc,
family = binomial(link = "logit")
)
tab_model(m1, m3)
Negative impact with 7 items |
neg c 7 d | |||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Odds Ratios | CI | p |
(Intercept) | 6.55 | 4.86 – 8.23 | <0.001 | 0.02 | 0.01 – 0.05 | <0.001 |
carer’age | -0.00 | -0.03 – 0.02 | 0.802 | 1.01 | 0.99 – 1.02 | 0.355 |
carer’s gender | 0.47 | -0.08 – 1.02 | 0.094 | 1.83 | 1.30 – 2.59 | 0.001 |
elder’s dependency | 1.45 | 1.19 – 1.71 | <0.001 | 2.37 | 1.99 – 2.81 | <0.001 |
Random Effects | ||||||
σ2 | 12.61 | 3.29 | ||||
τ00 | 0.50 cluster | 0.24 cluster | ||||
ICC | 0.04 | 0.07 | ||||
N | 8 cluster | 8 cluster | ||||
Observations | 888 | 888 | ||||
Marginal R2 / Conditional R2 | 0.127 / 0.160 | 0.181 / 0.237 |
Finally, an example from the glmmTMB-package to show how easy it is to print zero-inflated generalized linear mixed models as HTML table.
library(glmmTMB)
data("Salamanders")
m4 <- glmmTMB(
count ~ spp + mined + (1 | site),
ziformula = ~ spp + mined,
family = truncated_poisson(link = "log"),
data = Salamanders
)
tab_model(m1, m3, m4, show.ci = FALSE)
Negative impact with 7 items |
neg c 7 d | count | ||||
---|---|---|---|---|---|---|
Predictors | Estimates | p | Odds Ratios | p | Incidence Rate Ratios | p |
(Intercept) | 6.55 | <0.001 | 0.02 | <0.001 | 0.94 | 0.745 |
carer’age | -0.00 | 0.802 | 1.01 | 0.355 | ||
carer’s gender | 0.47 | 0.094 | 1.83 | 0.001 | ||
elder’s dependency | 1.45 | <0.001 | 2.37 | <0.001 | ||
spp: PR | 0.59 | 0.062 | ||||
spp: DM | 1.25 | 0.121 | ||||
spp: EC-A | 0.82 | 0.331 | ||||
spp: EC-L | 1.91 | <0.001 | ||||
spp: DES-L | 1.83 | <0.001 | ||||
spp: DF | 1.05 | 0.765 | ||||
mined: no | 2.76 | <0.001 | ||||
Zero-Inflated Model | ||||||
(Intercept) | 5.79 | <0.001 | ||||
spp: PR | 5.36 | <0.001 | ||||
spp: DM | 0.65 | 0.223 | ||||
spp: EC-A | 3.02 | 0.003 | ||||
spp: EC-L | 0.65 | 0.223 | ||||
spp: DES-L | 0.51 | 0.056 | ||||
spp: DF | 0.65 | 0.223 | ||||
mined: no | 0.09 | <0.001 | ||||
Random Effects | ||||||
σ2 | 12.61 | 3.29 | 0.29 | |||
τ00 | 0.50 cluster | 0.24 cluster | 0.05 site | |||
ICC | 0.04 | 0.07 | 0.15 | |||
N | 8 cluster | 8 cluster | 23 site | |||
Observations | 888 | 888 | 644 | |||
Marginal R2 / Conditional R2 | 0.127 / 0.160 | 0.181 / 0.237 | 0.541 / 0.612 |
Nakagawa S, Johnson P, Schielzeth H (2017) The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisted and expanded. J. R. Soc. Interface 14. doi: 10.1098/rsif.2017.0213
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.