The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The package is intended to facilitate the use of research compendiums for data analysis in the R environment. Standard research compendiums provide a easily recognizable means for organizing digital materials, allowing other researchers to inspect, reproduce, and build upon that research.
Unlike other R packages for creating research compendiums (e.g. vertical, rrtools),
sketchy
isn’t wedded to a particular folder structure.
Currently the package provides 14 alternative structures (see object
compendiums
) and allows users to modify or input their own
structures.
To install the latest developmental version from github you will need the R package remotes:
# From github
::install_github("maRce10/sketchy")
remotes
# load package
library(sketchy)
Compendiums can be set up with the function
make_compendium()
. The function creates the
folder/subfolder structure and prints a diagram of the skeleton in the
console:
= tempdir()
path
# load data
data(compendiums)
make_compendium(name = "proyect_x", path = path, format = "basic")
## Creating directories ...
## proyect_x
## │
## ├── data/
## │ ├── processed/ # modified/rearranged data
## │ └── raw/ # original data
## ├── manuscript/ # manuscript/poster figures
## ├── output/ # all non-data products of data analysis
## └── scripts/ # code
## Done.
(in these examples the compendiums are created in a temporary directory, change ‘path’ to create it in a different directory)
We can use folder structures from other sources. For instance, in this example we use the structured suggested by Wilson et al. (2017):
make_compendium(name = "proyect_z", path = path, format = "large_compendium")
## Creating directories ...
## proyect_z
## │
## ├── analysis/ # Data, scripts, RMarkdown reports and Makefile
## │ ├── data/ # Raw data in open formats, not changed once created
## │ └── scripts/ # R code used to analyse and visualise data
## ├── man/ # Auto-generated documentation for the custom R functions
## ├── R/ # Custom R functions used repeatedly throughout the project
## └── tests/ # Unit tests of R functions to ensure they perform as expected
## Done.
When creating a compendium that includes a “manuscript” folder the package adds a “manuscript_template.Rmd” file for facilitating paper writing within the compendium itself.
We can check all compendium structure available as follows:
for (i in 1:length(compendiums)) {
print("---------------", quote = FALSE)
print(names(compendiums)[i], quote = FALSE)
print_skeleton(folders = compendiums[[i]]$skeleton)
}## [1] ---------------
## [1] basic
## .
## │
## ├── data/
## │ ├── processed/
## │ └── raw/
## ├── manuscript/
## ├── output/
## └── scripts/
## [1] ---------------
## [1] figures
## .
## │
## ├── data/
## │ ├── processed/
## │ └── raw/
## ├── manuscript/
## ├── output/
## │ └── figures/
## │ ├── exploratory/
## │ └── final/
## └── scripts/
## [1] ---------------
## [1] project_template
## .
## │
## ├── cache/
## ├── config/
## ├── data/
## ├── diagnostics/
## ├── docs/
## ├── graphs/
## ├── lib/
## ├── logs/
## ├── munge/
## ├── profiling/
## ├── reports/
## ├── src/
## └── tests/
## [1] ---------------
## [1] pakillo
## .
## │
## ├── analyses/
## ├── data/
## ├── data-raw/
## ├── docs/
## ├── inst/
## ├── man/
## ├── manuscript/
## ├── R/
## └── tests/
## [1] ---------------
## [1] boettiger
## .
## │
## ├── man/
## ├── R/
## ├── tests/
## └── vignettes/
## [1] ---------------
## [1] wilson
## .
## │
## ├── data/
## ├── doc/
## ├── requirements/
## ├── results/
## └── src/
## [1] ---------------
## [1] small_compendium
## .
## │
## ├── analysis/
## └── data/
## [1] ---------------
## [1] medium_compendium
## .
## │
## ├── analysis/
## ├── data/
## ├── man/
## └── R/
## [1] ---------------
## [1] large_compendium
## .
## │
## ├── analysis/
## │ ├── data/
## │ └── scripts/
## ├── man/
## ├── R/
## └── tests/
## [1] ---------------
## [1] vertical
## .
## │
## ├── data/
## ├── data-raw/
## ├── docs/
## ├── experiments/
## ├── man/
## ├── manuscripts/
## ├── model/
## ├── posters/
## ├── R/
## ├── slides/
## └── vignettes/
## [1] ---------------
## [1] rrtools
## .
## │
## ├── analysis/
## ├── data/
## ├── figures/
## ├── paper/
## └── templates/
## [1] ---------------
## [1] rdir
## .
## │
## ├── code/
## │ ├── processed/
## │ └── raw/
## ├── data/
## │ ├── clean/
## │ └── raw/
## ├── figures/
## │ ├── exploratory/
## │ └── final/
## └── text/
## ├── final/
## └── notes/
## [1] ---------------
## [1] workflowr
## .
## │
## ├── analysis/
## ├── code/
## ├── data/
## ├── docs/
## └── output/
## [1] ---------------
## [1] sketchy
## .
## │
## ├── data/
## │ ├── processed/
## │ └── raw/
## ├── manuscript/
## ├── output/
## └── scripts/
Please cite sketchy as follows:
Araya-Salas, M., Willink, B., Arriaga, A. (2020), sketchy: research compendiums for data analysis in R. R package version 1.0.0.
Alston, J., & Rick, J. (2020). A Beginner’s Guide to Conducting Reproducible Research.
Marwick, B., Boettiger, C., & Mullen, L. (2018). Packaging Data Analytical Work Reproducibly Using R (and Friends). American Statistician, 72(1), 80–88.
Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L. & Teal, T. K.. 2017. Good enough practices in scientific computing. PLOS Computational Biology 13(6): e1005510.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.