The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

skewMLRM: Estimation for Scale-Shape Mixtures of Skew-Normal Distributions

Provide data generation and estimation tools for the multivariate scale mixtures of normal presented in Lange and Sinsheimer (1993) <doi:10.2307/1390698>, the multivariate scale mixtures of skew-normal presented in Zeller, Lachos and Vilca (2011) <doi:10.1080/02664760903406504>, the multivariate skew scale mixtures of normal presented in Louredo, Zeller and Ferreira (2021) <doi:10.1007/s13571-021-00257-y> and the multivariate scale mixtures of skew-normal-Cauchy presented in Kahrari et al. (2020) <doi:10.1080/03610918.2020.1804582>.

Version: 1.6
Depends: R (≥ 4.0.0), stats, foreach
Imports: moments, clusterGeneration, doParallel, parallel, MASS, mvtnorm, matrixcalc
Suggests: sn
Published: 2021-11-24
DOI: 10.32614/CRAN.package.skewMLRM
Author: Clecio Ferreira [aut], Diego Gallardo [aut, cre], Camila Zeller [aut]
Maintainer: Diego Gallardo <diego.gallardo at uda.cl>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Materials: NEWS
CRAN checks: skewMLRM results

Documentation:

Reference manual: skewMLRM.pdf

Downloads:

Package source: skewMLRM_1.6.tar.gz
Windows binaries: r-devel: skewMLRM_1.6.zip, r-release: skewMLRM_1.6.zip, r-oldrel: skewMLRM_1.6.zip
macOS binaries: r-release (arm64): skewMLRM_1.6.tgz, r-oldrel (arm64): skewMLRM_1.6.tgz, r-release (x86_64): skewMLRM_1.6.tgz, r-oldrel (x86_64): skewMLRM_1.6.tgz
Old sources: skewMLRM archive

Reverse dependencies:

Reverse imports: tpn

Linking:

Please use the canonical form https://CRAN.R-project.org/package=skewMLRM to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.