The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

skewlmm: Scale Mixture of Skew-Normal Linear Mixed Models

It fits scale mixture of skew-normal linear mixed models using either an expectation–maximization (EM) type algorithm or its accelerated version (Damped Anderson Acceleration with Epsilon Monotonicity, DAAREM), including some possibilities for modeling the within-subject dependence. Details can be found in Schumacher, Lachos and Matos (2021) <doi:10.1002/sim.8870>.

Version: 1.1.2
Depends: R (≥ 4.3), optimParallel
Imports: dplyr, ggplot2, methods, stats, future, ggrepel, haven, mvtnorm, nlme, purrr, furrr, matrixcalc, moments, numDeriv, relliptical, MomTrunc, TruncatedNormal
Published: 2024-12-15
DOI: 10.32614/CRAN.package.skewlmm
Author: Fernanda L. Schumacher ORCID iD [aut, cre], Larissa A. Matos ORCID iD [aut], Victor H. Lachos ORCID iD [aut], Katherine A. L. Valeriano ORCID iD [aut], Nicholas Henderson [ctb], Ravi Varadhan [ctb]
Maintainer: Fernanda L. Schumacher <fernandalschumacher at gmail.com>
BugReports: https://github.com/fernandalschumacher/skewlmm/issues
License: MIT + file LICENSE
URL: https://github.com/fernandalschumacher/skewlmm
NeedsCompilation: no
Materials: README NEWS
In views: MixedModels, Robust
CRAN checks: skewlmm results

Documentation:

Reference manual: skewlmm.pdf

Downloads:

Package source: skewlmm_1.1.2.tar.gz
Windows binaries: r-devel: skewlmm_1.1.2.zip, r-release: skewlmm_1.1.2.zip, r-oldrel: skewlmm_1.1.2.zip
macOS binaries: r-release (arm64): skewlmm_1.1.2.tgz, r-oldrel (arm64): skewlmm_1.1.2.tgz, r-release (x86_64): skewlmm_1.1.2.tgz, r-oldrel (x86_64): skewlmm_1.1.2.tgz
Old sources: skewlmm archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=skewlmm to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.