The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

SLEEV: Semiparametric Likelihood Estimation with Errors in Variables

The complete R package logreg2ph and code for the simulation settings included in this paper.

Part of the R package TwoPhaseReg as described in this paper.

This package combines elements of the R packages logreg2ph and TwoPhaseReg

Install

To install the package, run the following in your R console:

devtools::install_github("Epic-Doughnut/sleev")

Simulation settings

Inside the simulations subdirectory, you will find the following:

Generating Data

Inside each of the files above, you will find code to generate the appropriate data for that simulation setting, e.g.,

```{r, eval = F, tidy = TRUE} set.seed(918)

Set sample sizes —————————————-

N <- 1000 # Phase I size = N n <- 250 # Phase II/audit size = n

Generate true values Y, Xb, Xa —————————-

Xa <- rbinom(n = N, size = 1, prob = 0.25) Xb <- rbinom(n = N, size = 1, prob = 0.5) Y <- rbinom(n = N, size = 1, prob = (1 + exp(-(- 0.65 - 0.2 * Xb - 0.1 * Xa))) ^ (- 1))

Generate error-prone Xb* from error model P(Xb*|Xb,Xa) ——

sensX <- specX <- 0.75 delta0 <- - log(specX / (1 - specX)) delta1 <- - delta0 - log((1 - sensX) / sensX) Xbstar <- rbinom(n = N, size = 1, prob = (1 + exp(- (delta0 + delta1 * Xb + 0.5 * Xa))) ^ (- 1))

Generate error-prone Y* from error model P(Y|Xb,Y,Xb,Xa) —

sensY <- 0.95 specY <- 0.90 theta0 <- - log(specY / (1 - specY)) theta1 <- - theta0 - log((1 - sensY) / sensY) Ystar <- rbinom(n = N, size = 1, prob = (1 + exp(- (theta0 - 0.2 * Xbstar + theta1 * Y - 0.2 * Xb - 0.1 * Xa))) ^ (- 1))


Then, the user has the option of two audit designs: simple random sampling (SRS) or 1:1 case-control sampling based on $Y^*$ (naive case-control). Based on these designs, the validation indicators V are generated as follows: 

```{r, eval = FALSE}
# Choose audit design: SRS or -----------------------------
## Naive case-control: case-control based on Y^* ----
audit <- "SRS" #or "Naive case-control"

# Draw audit of size n based on design --------------------
## V is a TRUE/FALSE vector where TRUE = validated --------
if(audit == "SRS")
{
    V <- seq(1, N) %in% sample(x = seq(1, N), size = n, replace = FALSE)
}
if(audit == "Naive case-control")
{
    V <- seq(1, N) %in% c(sample(x = which(Ystar == 0), size = 0.5 * n, replace = FALSE),
                          sample(x = which(Ystar == 1), size = 0.5 * n, replace = FALSE))
}

Finally, combine the generated data and validation indicators into an analytical dataset:

{r, eval = F, tidy = T} # Build dataset -------------------------------------------- sdat <- cbind(Y, Xb, Ystar, Xbstar, Xa, V) # Make Phase-II variables Y, Xb NA for unaudited subjects --- sdat[!V, c("Y", "Xb")] <- NA

Running Estimator Code

The R scripts each contain implementations for the estimators discussed in the paper. Examples of each are provided below:

1. Naive Analysis

{r, eval = F, tidy = T} naive <- glm(Ystar ~ Xbstar + Xa, family = "binomial", data = data.frame(sdat)) beta_naive <- naive$coefficients[2] se_naive <- sqrt(diag(vcov(naive)))[2]

2. Complete-Case Analysis

{r, eval = F, tidy = T} cc <- glm(Y[V] ~ Xb[V] + Xa[V], family = "binomial") beta_cc <- cc$coefficients[2] se_cc <- sqrt(diag(vcov(cc)))[2]

3. Horvitz–Thompson Estimator (for Naive Case-Control Audit Only)

{r, eval = F, tidy = T} library(sandwich) if (audit == "Naive case-control") { sample_wts <- ifelse(Ystar[V] == 0, 1 / ((0.5 * n) / (table(Ystar)[1])), 1 / ((0.5 * n) / (table(Ystar)[2]))) ht <- glm(Y[V] ~ Xb[V] + Xa[V], family = "binomial", weights = sample_wts) beta_ht <- ht$coefficients[2] se_ht <- sqrt(diag(sandwich(ht)))[2] }

4. Generalized Raking Estimator

```{r, eval = F, tidy = T} ### Influence function for logistic regression ### Taken from: https://github.com/T0ngChen/multiwave/blob/master/sim.r inf.fun <- function(fit) { dm <- model.matrix(fit) Ihat <- (t(dm) %% (dm fit\(fitted.values * (1 - fit\)fitted.values))) / nrow(dm) ## influence function infl <- (dm * resid(fit, type = “response”)) %*% solve(Ihat) infl }

naive_infl <- inf.fun(naive) # error-prone influence functions based on naive model colnames(naive_infl) <- paste0(“if”, 1:3)

Add naive influence functions to sdat ———————————————–

sdat <- cbind(id = 1:N, sdat, naive_infl)

Calibrate raking weights to the sum of the naive influence functions —————-

library(survey) if (audit == “SRS”) { sstudy <- twophase(id = list(~id, ~id), data = data.frame(sdat), subset = ~V) } else if (audit == “Naive case-control”) { sstudy <- twophase(id = list(~id, ~id), data = data.frame(sdat), strat = list(NULL, ~Ystar), subset = ~V) } scal <- calibrate(sstudy, ~ if1 + if2 + if3, phase = 2, calfun = “raking”)

Fit analysis model using calibrated weights —————————————–

rake <- svyglm(Y ~ Xb + Xa, family = “binomial”, design = scal) beta_rake <- rake$coefficients[2] se_rake <- sqrt(diag(vcov(rake)))[2]


#### 5. Maximum Likelihood Estimator (MLE) (for Binary Xb* Only)

```{r, eval = F, tidy = T}
# Script: two-phase log-likelihood specification adapted from Tang et al. (2015) named ~/code/Tang_twophase_loglik_binaryX.R
source("Tang_twophase_loglik_binaryX.R")
fit_Tang <- nlm(f = Tang_twophase_loglik,
                p = rep(0, 12),
                hessian = TRUE,
                Val = "V",
                Y_unval = "Ystar",
                Y_val="Y",
                X_unval = "Xbstar",
                X_val = "Xb",
                C = "Xa",
                data = sdat)
beta_mle <- fit_Tang$estimate[10]
se_mle <- sqrt(diag(solve(fit_Tang$hessian)))[10]

6. Sieve Maximum Likelihood Estimator (SMLE)

```{r, eval = F, tidy = T} # Construct B-spline basis ——————————- nsieve <- 4 B <- matrix(0, nrow = N, ncol = nsieve) B[which(Xa == 0 & Xbstar == 0), 1] <- 1 B[which(Xa == 0 & Xbstar == 1), 2] <- 1 B[which(Xa == 1 & Xbstar == 0), 3] <- 1 B[which(Xa == 1 & Xbstar == 1), 4] <- 1 colnames(B) <- paste0(“bs”, seq(1, nsieve)) sdat <- cbind(sdat, B)

library(“logreg2ph”) smle <- logreg2ph(Y_unval = “Ystar”, Y_val = “Y”, X_unval = “Xbstar”, X_val = “Xb”, C = “Xa”, Validated = “V”, Bspline = colnames(B), data = sdat, noSE = FALSE, MAX_ITER = 1000, TOL = 1E-4) beta_smle <- smle\(Coefficients\)Coefficient[2] se_smle <- smle\(Coefficients\)SE[2] ```

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.