The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(spINAR)
This file provides reproduced results from the literature for each provided functionality of the package.
First, we reproduce the Tables 8, 9 and part of Table 10 published in Jentsch and Weiß (2017) who analyze a time series of length \(n=1632\) containing counts concerning the Lufthansa stock traded in the XETRA system of Deutsche Börse. This data set was first analyzed by Jung and Tremayne (2011). For reproducing the results of the stated Tables, we use the functions , and , where the latter implicitly makes additionally use of .
# Load the package
library(spINAR)
The following data were read from Figure 3 in Jung and Tremayne (2011).
<- c(0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0,
ice 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 2,
3, 2, 1, 0, 1, 1, 0, 2, 0, 0, 1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 1,
2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1,
0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 2, 0, 5, 1, 2, 0, 0, 0,
1, 2, 0, 1, 1, 3, 2, 3, 1, 2, 3, 2, 1, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1,
2, 3, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 1, 1, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 1,
0, 2, 1, 1, 2, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 1, 0, 3, 1, 1, 2, 0,
0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2,
2, 2, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
1, 1, 1, 1, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
0, 1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 4, 3, 3, 3, 2, 1, 2, 2,
2, 2, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 2,
2, 1, 1, 1, 0, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 1, 1, 0, 1, 1, 2, 3, 2, 2,
2, 1, 2, 1, 0, 1, 1, 1, 0, 0, 4, 3, 2, 1, 3, 1, 0, 1, 0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 1,
2, 2, 2, 0, 0, 0, 1, 3, 1, 2, 1, 0, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 0, 1,
0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 2, 3, 2, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1,
0, 0, 1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1,
1, 0, 1, 1, 2, 2, 2, 1, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 2, 0, 1, 2, 2, 0, 1, 0, 0, 1, 0, 1, 2, 1, 1, 1, 0, 0, 2, 0, 1,
1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 2,
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 3, 3, 5,
1, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1,
1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 3,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 3, 3, 3, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 1,
1, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 2, 4, 3, 2, 0, 2,
2, 2, 0, 2, 2, 2, 2, 0, 1, 2, 4, 2, 1, 0, 1, 3, 1, 0, 1, 0, 0, 0, 0, 1,
1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 1, 2, 2, 2, 0,
2, 1, 2, 0, 2, 2, 0, 0, 0, 2, 2, 1, 2, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,
1, 2, 3, 2, 2, 0, 2, 1, 1, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 1, 2, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
1, 0, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 2, 0,
0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 4, 1, 2, 1, 1, 3,
2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 1, 1, 1, 1, 4, 0, 2, 2, 3, 1, 1, 1, 1, 2, 0, 3, 3, 2, 1, 1,
1, 1, 0, 2, 2, 2, 1, 0, 1, 0, 0, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0,
0, 2, 0, 4, 2, 2, 0, 1, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
3, 4, 5, 4, 4, 3, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 0, 0, 1,
1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1,
0, 3, 1, 2, 3, 3, 1, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2,
0, 0, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 0, 0, 2, 1, 1, 2, 3, 2, 7, 3, 6,
5, 0, 1, 1, 1, 1, 2, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0,
2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0,
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 2,
0, 1, 2, 1, 1, 2, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 1, 0, 1, 1, 1, 2, 1,
2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
Semi-parametric INAR(\(p\)) estimates for iceberg counts (Table 8):
# p=1
<- max(ice)
xmax <- spinar_est(ice,1)
est_sp_1 <- sum(est_sp_1[-1]*(0:xmax))
mu_e_sp_1 <- sum(est_sp_1[-1]*(0:xmax)^2) - mu_e_sp_1^2
sigma2_e_sp_1 c(est_sp_1, mu_e_sp_1,sigma2_e_sp_1)
#> [1] 5.272320e-01 6.974124e-01 2.500813e-01 4.383088e-02 4.942549e-03
#> [6] 2.395474e-03 1.337384e-03 1.137424e-08 5.075722e-09 3.688396e-01
#> [11] 4.056079e-01
# p=2
<- spinar_est(ice,2)
est_sp_2 <- sum(est_sp_2[-(1:2)]*(0:xmax))
mu_e_sp_2 <- sum(est_sp_2[-(1:2)]*(0:xmax)^2) - mu_e_sp_2^2
sigma2_e_sp_2 c(est_sp_1, mu_e_sp_2,sigma2_e_sp_2)
#> [1] 5.272320e-01 6.974124e-01 2.500813e-01 4.383088e-02 4.942549e-03
#> [6] 2.395474e-03 1.337384e-03 1.137424e-08 5.075722e-09 2.830096e-01
#> [11] 3.139332e-01
Parametric INAR(\(p\)) estimates for iceberg counts (Table 9)
# p=1
<- spinar_est_param(ice,1,"mom","poi")
est_p_1 <- c(est_p_1[1],dpois(0:xmax,est_p_1[2]))
est_p_1_v unname(c(est_p_1_v, est_p_1[2], est_p_1[2]))
#> [1] 5.071281e-01 6.816465e-01 2.612370e-01 5.005878e-02 6.394911e-03
#> [6] 6.127031e-04 4.696298e-05 2.999714e-06 1.642319e-07 3.832442e-01
#> [11] 3.832442e-01
# p=2
<- spinar_est_param(ice,2,"mom","poi")
est_p_2 <- c(est_p_2[1:2],dpois(0:xmax,est_p_2[3]))
est_p_2_v unname(c(est_p_2_v, est_p_2[3], est_p_2[3]))
#> [1] 4.118988e-01 1.877816e-01 7.325102e-01 2.280143e-01 3.548791e-02
#> [6] 3.682202e-03 2.865470e-04 1.783916e-05 9.254893e-07 4.115492e-08
#> [11] 3.112780e-01 3.112780e-01
For Table 10, we focus on the reproducing of the confidence intervals of the observations’ mean.
# Setting of parametrizations (Jentsch and Weiß, 2017)
<- 10^4
B <- 0.05
level <- 10
M
<- mean(ice) mu_est
95% confidence intervals for the observations’ mean using the parametric approach
# p=1
<- spinar_boot(ice, 1, B, "p", "mom", "poi", progress = FALSE)$x_star
xstar_p <- apply(xstar_p, 2, mean)
mu_est_star <- mu_est_star - mu_est
mu_est_star_cent <- sort(mu_est_star_cent)
srt c(mu_est - quantile(srt,1-level,names=FALSE), mu_est - quantile(srt,level,names=FALSE))
#> [1] 0.7132353 0.8394608
# p=2
<- spinar_boot(ice, 2, B, "p", "mom", "poi", progress = FALSE)$x_star
xstar_p <- apply(xstar_p, 2, mean)
mu_est_star <- mu_est_star - mu_est
mu_est_star_cent <- sort(mu_est_star_cent)
srt c(mu_est - quantile(srt,1-level,names=FALSE), mu_est - quantile(srt,level,names=FALSE))
#> [1] 0.6960784 0.8553922
95% confidence intervals for the observations’ mean using the semi-parametric approach
# p=1
<- mu_e_sp_1/(1-est_sp_1[1])
mu_est_cent <- spinar_boot(ice, 1, B, "sp", progress = FALSE)$x_star
xstar_sp <- apply(xstar_sp, 2, mean)
mu_est_star <- mu_est_star - mu_est_cent
mu_est_star_cent <- sort(mu_est_star_cent)
srt c(mu_est - quantile(srt,1-level,names=FALSE), mu_est - quantile(srt,level,names=FALSE))
# p=2
<- mu_e_sp_2/(1-est_sp_2[1]-est_sp_2[2])
mu_est_cent <- spinar_boot(ice, 2, B, "sp", progress = FALSE)$x_star
xstar_sp <- apply(xstar_sp, 2, mean)
mu_est_star <- mu_est_star - mu_est_cent
mu_est_star_cent <- sort(mu_est_star_cent)
srt c(mu_est - quantile(srt,1-level,names=FALSE), mu_est - quantile(srt,level,names=FALSE))
Next, we reproduce the results of Figure 10 published in Faymonville et al. (2022). They considered a time series of length \(n=51\) of the monthly demand of a car spare part from January 1998 to March 2002. The data set was first analyzed in Hyndman (2008) and is available in the R package . For reproducing, we use the function . A validation of the penalization parameters could be done with .
# Load the data set
<- c(1,1,0,2,1,4,4,5,4,0,2,1,0,0,1,2,1,3,1,0,1,2,1,0,0,1,0,1,0,0,2,0,2,2,0,
data 2,1,0,1,2,1,1,0,0,0,0,0,0,1,2,2)
# Unpenalized estimation of the innovation distribution
<- spinar_est(data,1)
est_unpenal
# Penalized estimation of the innovation distribution
<- spinar_penal(data,1,0,1) est_penal
Plot of the unpenalized and penalized estimated innovation distribution (see https://github.com/MFaymon/spINAR/blob/main/vignettes/barplots.png)
par(mfrow=c(1,2))
barplot(est_unpenal[-1], ylim=c(0,1),names.arg=0:5,
main="Unpenalized estimated \n innovation distribution")
barplot(est_penal[-1], ylim=c(0,1),names.arg=0:5,
main="Penalized estimated \n innovation distribution")
### References
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.