The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette can be cited as:
To cite package 'statsExpressions' in publications use:
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes
and Expressions with Statistical Details. Journal of Open Source
Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
A BibTeX entry for LaTeX users is
@Article{,
doi = {10.21105/joss.03236},
year = {2021},
publisher = {{The Open Journal}},
volume = {6},
number = {61},
pages = {3236},
author = {Indrajeet Patil},
title = {{statsExpressions: {R} Package for Tidy Dataframes and Expressions with Statistical Details}},
journal = {{Journal of Open Source Software}},
}
Here a go-to summary about statistical test carried out and the
returned effect size for each function is provided. This should be
useful if one needs to find out more information about how an argument
is resolved in the underlying package or if one wishes to browse the
source code. So, for example, if you want to know more about how one-way
(between-subjects) ANOVA, you can run ?stats::oneway.test
in your R console.
Abbreviations used: CI = Confidence Interval
Summary of available analyses
Test | Function |
---|---|
one-sample t-test | one_sample_test() |
two-sample t-test | two_sample_test() |
one-way ANOVA | oneway_anova() |
correlation analysis | corr_test() |
contingency table analysis | contingency_table() |
meta-analysis | meta_analysis() |
pairwise comparisons | pairwise_comparisons() |
Summary of details available for analyses
Analysis | Hypothesis testing | Effect size estimation |
---|---|---|
(one/two-sample) t-test | ✅ | ✅ |
one-way ANOVA | ✅ | ✅ |
correlation | ✅ | ✅ |
(one/two-way) contingency table | ✅ | ✅ |
random-effects meta-analysis | ✅ | ✅ |
Summary of supported statistical approaches
Description | Parametric | Non-parametric | Robust | Bayesian |
---|---|---|---|---|
Between group/condition comparisons | ✅ | ✅ | ✅ | ✅ |
Within group/condition comparisons | ✅ | ✅ | ✅ | ✅ |
Distribution of a numeric variable | ✅ | ✅ | ✅ | ✅ |
Correlation between two variables | ✅ | ✅ | ✅ | ✅ |
Association between categorical variables | ✅ | ✅ | ❌ | ✅ |
Equal proportions for categorical variable levels | ✅ | ✅ | ❌ | ✅ |
Random-effects meta-analysis | ✅ | ❌ | ✅ | ✅ |
Here a go-to summary about statistical test carried out and the
returned effect size for each function is provided. This should be
useful if one needs to find out more information about how an argument
is resolved in the underlying package or if one wishes to browse the
source code. So, for example, if you want to know more about how one-way
(between-subjects) ANOVA, you can run ?stats::oneway.test
in your R console.
centrality_description()
Type | Measure | Function used |
---|---|---|
Parametric | mean | datawizard::describe_distribution() |
Non-parametric | median | datawizard::describe_distribution() |
Robust | trimmed mean | datawizard::describe_distribution() |
Bayesian | MAP | datawizard::describe_distribution() |
oneway_anova()
Hypothesis testing
Type | No. of groups | Test | Function used |
---|---|---|---|
Parametric | > 2 | Fisher’s or Welch’s one-way ANOVA | stats::oneway.test() |
Non-parametric | > 2 | Kruskal-Wallis one-way ANOVA | stats::kruskal.test() |
Robust | > 2 | Heteroscedastic one-way ANOVA for trimmed means | WRS2::t1way() |
Bayes Factor | > 2 | Fisher’s ANOVA | BayesFactor::anovaBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
---|---|---|---|---|
Parametric | > 2 | partial eta-squared, partial omega-squared | Yes | effectsize::omega_squared() ,
effectsize::eta_squared() |
Non-parametric | > 2 | rank epsilon squared | Yes | effectsize::rank_epsilon_squared() |
Robust | > 2 | Explanatory measure of effect size | Yes | WRS2::t1way() |
Bayes Factor | > 2 | Bayesian R-squared | Yes | performance::r2_bayes() |
Hypothesis testing
Type | No. of groups | Test | Function used |
---|---|---|---|
Parametric | > 2 | One-way repeated measures ANOVA | afex::aov_ez() |
Non-parametric | > 2 | Friedman rank sum test | stats::friedman.test() |
Robust | > 2 | Heteroscedastic one-way repeated measures ANOVA for trimmed means | WRS2::rmanova() |
Bayes Factor | > 2 | One-way repeated measures ANOVA | BayesFactor::anovaBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
---|---|---|---|---|
Parametric | > 2 | partial eta-squared, partial omega-squared | Yes | effectsize::omega_squared() ,
effectsize::eta_squared() |
Non-parametric | > 2 | Kendall’s coefficient of concordance | Yes | effectsize::kendalls_w() |
Robust | > 2 | Algina-Keselman-Penfield robust standardized difference average | Yes | WRS2::wmcpAKP() |
Bayes Factor | > 2 | Bayesian R-squared | Yes | performance::r2_bayes() |
two_sample_test()
Hypothesis testing
Type | No. of groups | Test | Function used |
---|---|---|---|
Parametric | 2 | Student’s or Welch’s t-test | stats::t.test() |
Non-parametric | 2 | Mann-Whitney U test | stats::wilcox.test() |
Robust | 2 | Yuen’s test for trimmed means | WRS2::yuen() |
Bayesian | 2 | Student’s t-test | BayesFactor::ttestBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
---|---|---|---|---|
Parametric | 2 | Cohen’s d, Hedge’s g | Yes | effectsize::cohens_d() ,
effectsize::hedges_g() |
Non-parametric | 2 | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | 2 | Algina-Keselman-Penfield robust standardized difference | Yes | WRS2::akp.effect() |
Bayesian | 2 | difference | Yes | bayestestR::describe_posterior() |
Hypothesis testing
Type | No. of groups | Test | Function used |
---|---|---|---|
Parametric | 2 | Student’s t-test | stats::t.test() |
Non-parametric | 2 | Wilcoxon signed-rank test | stats::wilcox.test() |
Robust | 2 | Yuen’s test on trimmed means for dependent samples | WRS2::yuend() |
Bayesian | 2 | Student’s t-test | BayesFactor::ttestBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
---|---|---|---|---|
Parametric | 2 | Cohen’s d, Hedge’s g | Yes | effectsize::cohens_d() ,
effectsize::hedges_g() |
Non-parametric | 2 | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | 2 | Algina-Keselman-Penfield robust standardized difference | Yes | WRS2::wmcpAKP() |
Bayesian | 2 | difference | Yes | bayestestR::describe_posterior() |
one_sample_test()
Hypothesis testing
Type | Test | Function used |
---|---|---|
Parametric | One-sample Student’s t-test | stats::t.test() |
Non-parametric | One-sample Wilcoxon test | stats::wilcox.test() |
Robust | Bootstrap-t method for one-sample test | WRS2::trimcibt() |
Bayesian | One-sample Student’s t-test | BayesFactor::ttestBF() |
Effect size estimation
Type | Effect size | CI available? | Function used |
---|---|---|---|
Parametric | Cohen’s d, Hedge’s g | Yes | effectsize::cohens_d() ,
effectsize::hedges_g() |
Non-parametric | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | trimmed mean | Yes | WRS2::trimcibt() |
Bayes Factor | difference | Yes | bayestestR::describe_posterior() |
corr_test()
Hypothesis testing and Effect size estimation
Type | Test | CI available? | Function used |
---|---|---|---|
Parametric | Pearson’s correlation coefficient | Yes | correlation::correlation() |
Non-parametric | Spearman’s rank correlation coefficient | Yes | correlation::correlation() |
Robust | Winsorized Pearson’s correlation coefficient | Yes | correlation::correlation() |
Bayesian | Bayesian Pearson’s correlation coefficient | Yes | correlation::correlation() |
contingency_table()
Hypothesis testing
Type | Design | Test | Function used |
---|---|---|---|
Parametric/Non-parametric | Unpaired | Pearson’s chi-squared test | stats::chisq.test() |
Bayesian | Unpaired | Bayesian Pearson’s chi-squared test | BayesFactor::contingencyTableBF() |
Parametric/Non-parametric | Paired | McNemar’s chi-squared test | stats::mcnemar.test() |
Bayesian | Paired | No | No |
Effect size estimation
Type | Design | Effect size | CI available? | Function used |
---|---|---|---|---|
Parametric/Non-parametric | Unpaired | Cramer’s V | Yes | effectsize::cramers_v() |
Bayesian | Unpaired | Cramer’s V | Yes | effectsize::cramers_v() |
Parametric/Non-parametric | Paired | Cohen’s g | Yes | effectsize::cohens_g() |
Bayesian | Paired | No | No | No |
Hypothesis testing
Type | Test | Function used |
---|---|---|
Parametric/Non-parametric | Goodness of fit chi-squared test | stats::chisq.test() |
Bayesian | Bayesian Goodness of fit chi-squared test | (custom) |
Effect size estimation
Type | Effect size | CI available? | Function used |
---|---|---|---|
Parametric/Non-parametric | Pearson’s C | Yes | effectsize::pearsons_c() |
Bayesian | No | No | No |
meta_analysis()
Hypothesis testing and Effect size estimation
Type | Test | Effect size | CI available? | Function used |
---|---|---|---|---|
Parametric | Meta-analysis via random-effects models | beta | Yes | metafor::metafor() |
Robust | Meta-analysis via robust random-effects models | beta | Yes | metaplus::metaplus() |
Bayes | Meta-analysis via Bayesian random-effects models | beta | Yes | metaBMA::meta_random() |
See {effectsize}
’s interpretation functions to check
different rules/conventions to interpret effect sizes:
https://easystats.github.io/effectsize/reference/index.html#section-interpretation
For parametric and non-parametric effect sizes: https://easystats.github.io/effectsize/articles/
For robust effect sizes: https://CRAN.R-project.org/package=WRS2/vignettes/WRS2.pdf
For Bayesian posterior estimates: https://easystats.github.io/bayestestR/articles/bayes_factors.html
If you find any bugs or have any suggestions/remarks, please file an issue on GitHub: https://github.com/IndrajeetPatil/statsExpressions/issues
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.