The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The goal of stepcount
is to wrap up the https://github.com/OxWearables/stepcount algorithm.
stepcount
Python ModuleSee https://github.com/OxWearables/stepcount?tab=readme-ov-file#install
for how to install the stepcount
python module.
In R
, you can do this via:
= "stepcountblah"
envname ::conda_create(envname = envname, packages = c("python=3.9", "openjdk", "pip"))
reticulateSys.unsetenv("RETICULATE_PYTHON")
::use_condaenv(envname)
reticulate::py_install("stepcount", envname = envname, method = "conda", pip = TRUE) reticulate
Once this is finished, you should be able to check this via:
::have_stepcount_condaenv()
stepcount::have_stepcount() stepcount
In some cases, you ay want to set RETICULATE_PYTHON
variable:
::unset_reticulate_python()
stepcount= reticulate::conda_list()
clist Sys.setenv(RETICULATE_PYTHON = clist$python[clist$name == "stepcount"])
::use_stepcount_condaenv() stepcount
If you are using the Random Forest model from stepcount
,
you may need hmmlearn<0.3.0
due to some issues with its
new implementation of its models as described https://github.com/OxWearables/stepcount/issues/62 (Feb
2024).
stepcount
R
PackageYou can install the development version of stepcount
from GitHub with:
# install.packages("devtools")
::install_github("jhuwit/stepcount") devtools
stepcount
conda environmentIn order to use the stepcount
conda environment that
OxWearables recommends, you must run this command before
reticulate
is loaded:
::use_stepcount_condaenv() stepcount
RETICULATE_PYTHON
environment variableIf you have the RETICULATE_PYTHON
environment variable
in your .Renviron
or your PATH
, then
reticulate
will still use that version of Python and the
code will likely not work. The unset_reticulate_python()
function will unset that environment variable. So the usage would start
with something like:
::unset_reticulate_python()
stepcount::use_stepcount_condaenv() stepcount
and if you need reticulate
, you would load it after
::unset_reticulate_python()
stepcount::use_stepcount_condaenv()
stepcountlibrary(reticulate)
The stepcount_check
function can determine if the
stepcount
module can be loaded
::stepcount_check()
stepcount#> [1] TRUE
stepcount
(file)The main function is stepcount::stepcount
, which takes
can take in a file directly:
library(stepcount)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
library(tidyr)
#> Warning: package 'tidyr' was built under R version 4.3.2
= system.file("extdata/P30_wrist100.csv.gz", package = "stepcount")
file if (stepcount_check()) {
= stepcount(file = file)
out
}#> Loading model...
#> Downloading https://wearables-files.ndph.ox.ac.uk/files/models/stepcount/ssl-20230208.joblib.lzma...
#> Gravity calibration...Gravity calibration... Done! (0.05s)
#> Nonwear detection...Nonwear detection... Done! (0.04s)
#> Resampling...Resampling... Done! (0.05s)
#> Predicting from Model
#> Running step counter...
#> Defining windows...
#> Using local /Users/johnmuschelli/miniconda3/envs/stepcount/lib/python3.9/site-packages/stepcount/torch_hub_cache/OxWearables_ssl-wearables_v1.0.0
#> Classifying windows...
#> Processing Result
Let’s see inside the output, which is a list of values, namely a
data.frame
of steps
with the time (in 10s
increments) and the number of steps in those 10 seconds, a
data.frame
named walking
which has indicators
for if there is walking within that 10 second period:
names(out)
#> [1] "steps" "walking" "step_times" "summary"
#> [5] "summary_adjusted" "info"
str(out)
#> List of 6
#> $ steps :'data.frame': 361 obs. of 2 variables:
#> ..$ time : POSIXct[1:361], format: "2019-07-22 14:34:45" "2019-07-22 14:34:55" ...
#> ..$ steps: num [1:361] 0 0 0 0 0 0 0 0 0 0 ...
#> $ walking :'data.frame': 361 obs. of 2 variables:
#> ..$ time : POSIXct[1:361], format: "2019-07-22 14:34:45.88" "2019-07-22 14:34:55.88" ...
#> ..$ walking: num [1:361] 0 0 0 0 0 0 0 0 0 0 ...
#> $ step_times :'data.frame': 5739 obs. of 1 variable:
#> ..$ time: chr [1:5739] "2019-07-22 14:36:26.4899" "2019-07-22 14:36:26.9566" "2019-07-22 14:36:27.4899" "2019-07-22 14:36:27.9566" ...
#> $ summary :List of 16
#> ..$ total : int 5739
#> ..$ hourly : int [1:2(1d)] 2424 3315
#> .. ..- attr(*, "dimnames")=List of 1
#> .. .. ..$ : chr [1:2] "2019-07-22 14:00:00" "2019-07-22 15:00:00"
#> ..$ daily_stats :'data.frame': 1 obs. of 5 variables:
#> .. ..$ Walk(mins): num 54
#> .. ..$ Steps : num 5739
#> .. ..$ StepsQ1At : chr "14:49:45"
#> .. ..$ StepsQ2At : chr "15:06:45"
#> .. ..$ StepsQ3At : chr "15:20:55"
#> .. ..- attr(*, "pandas.index")=DatetimeIndex(['2019-07-22'], dtype='datetime64[ns]', name='time', freq='D')
#> ..$ daily_avg : int 5739
#> ..$ daily_med : int 5739
#> ..$ daily_min : int 5739
#> ..$ daily_max : int 5739
#> ..$ total_walk : int 54
#> ..$ daily_walk_avg: int 54
#> ..$ daily_walk_med: int 54
#> ..$ daily_walk_min: int 54
#> ..$ daily_walk_max: int 54
#> ..$ cadence_peak1 : int 123
#> ..$ cadence_peak30: int 113
#> ..$ daily_QAt_avg : chr [1:3(1d)] "14:49:45" "15:06:45" "15:20:55"
#> .. ..- attr(*, "dimnames")=List of 1
#> .. .. ..$ : chr [1:3] "StepsQ1At" "StepsQ2At" "StepsQ3At"
#> ..$ daily_QAt_med : chr [1:3(1d)] "14:49:45" "15:06:45" "15:20:55"
#> .. ..- attr(*, "dimnames")=List of 1
#> .. .. ..$ : chr [1:3] "StepsQ1At" "StepsQ2At" "StepsQ3At"
#> $ summary_adjusted:List of 16
#> ..$ total : num NaN
#> ..$ hourly : num [1:24(1d)] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ...
#> .. ..- attr(*, "dimnames")=List of 1
#> .. .. ..$ : chr [1:24] "2019-07-22 00:00:00" "2019-07-22 01:00:00" "2019-07-22 02:00:00" "2019-07-22 03:00:00" ...
#> ..$ daily_stats :'data.frame': 1 obs. of 5 variables:
#> .. ..$ Walk(mins): num NaN
#> .. ..$ Steps : num NaN
#> .. ..$ StepsQ1At : num NaN
#> .. ..$ StepsQ2At : num NaN
#> .. ..$ StepsQ3At : num NaN
#> .. ..- attr(*, "pandas.index")=DatetimeIndex(['2019-07-22'], dtype='datetime64[ns]', name='time', freq='D')
#> ..$ daily_avg : num NaN
#> ..$ daily_med : num NaN
#> ..$ daily_min : num NaN
#> ..$ daily_max : num NaN
#> ..$ total_walk : num NaN
#> ..$ daily_walk_avg: num NaN
#> ..$ daily_walk_med: num NaN
#> ..$ daily_walk_min: num NaN
#> ..$ daily_walk_max: num NaN
#> ..$ cadence_peak1 : int 124
#> ..$ cadence_peak30: int 114
#> ..$ daily_QAt_avg : num [1:3(1d)] NaN NaN NaN
#> .. ..- attr(*, "dimnames")=List of 1
#> .. .. ..$ : chr [1:3] "StepsQ1At" "StepsQ2At" "StepsQ3At"
#> ..$ daily_QAt_med : num [1:3(1d)] NaN NaN NaN
#> .. ..- attr(*, "dimnames")=List of 1
#> .. .. ..$ : chr [1:3] "StepsQ1At" "StepsQ2At" "StepsQ3At"
#> $ info :List of 12
#> ..$ Filename : chr "/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library/stepcount/extdata/P30_wrist100.csv.gz"
#> ..$ Device : chr ".csv"
#> ..$ Filesize(MB) : num 4.8
#> ..$ SampleRate : int 100
#> ..$ CalibOK : int 0
#> ..$ CalibErrorBefore(mg) : num NaN
#> ..$ CalibErrorAfter(mg) : num NaN
#> ..$ WearTime(days) : num 0.0417
#> ..$ NonwearTime(days) : num 0
#> ..$ NumNonwearEpisodes : int 0
#> ..$ ResampleRate : int 30
#> ..$ NumTicksAfterResample: int 108001
head(out$steps)
#> time steps
#> 1 2019-07-22 14:34:45 0
#> 2 2019-07-22 14:34:55 0
#> 3 2019-07-22 14:35:05 0
#> 4 2019-07-22 14:35:15 0
#> 5 2019-07-22 14:35:25 0
#> 6 2019-07-22 14:35:35 0
tail(out$steps)
#> time steps
#> 356 2019-07-22 15:33:55 20
#> 357 2019-07-22 15:34:05 20
#> 358 2019-07-22 15:34:15 20
#> 359 2019-07-22 15:34:25 19
#> 360 2019-07-22 15:34:35 17
#> 361 2019-07-22 15:34:45 NaN
tail(out$walking)
#> time walking
#> 356 2019-07-22 15:33:55 1
#> 357 2019-07-22 15:34:05 1
#> 358 2019-07-22 15:34:15 1
#> 359 2019-07-22 15:34:25 1
#> 360 2019-07-22 15:34:35 1
#> 361 2019-07-22 15:34:45 NaN
The step_times
data.frame
indicates which
times are when steps occurred (at the original sample rate). Make sure
you have the digits.secs
option set to see the sub-seconds
for the times (esp for writing out files in
readr::write_csv
):
head(out$step_times)
#> time
#> 1 2019-07-22 14:36:26.4899
#> 2 2019-07-22 14:36:26.9566
#> 3 2019-07-22 14:36:27.4899
#> 4 2019-07-22 14:36:27.9566
#> 5 2019-07-22 14:36:30.4566
#> 6 2019-07-22 14:36:30.8233
options(digits.secs = 3)
head(out$step_times)
#> time
#> 1 2019-07-22 14:36:26.4899
#> 2 2019-07-22 14:36:26.9566
#> 3 2019-07-22 14:36:27.4899
#> 4 2019-07-22 14:36:27.9566
#> 5 2019-07-22 14:36:30.4566
#> 6 2019-07-22 14:36:30.8233
We can plot a portion of the tri-axial data and show where the steps were indicated:
= readr::read_csv(file)
df #> Rows: 360001 Columns: 5
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> dbl (4): x, y, z, annotation
#> dttm (1): time
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
if (stepcount_check()) {
= out$step_times
st = df[10000:12000,] %>%
dat ::select(-annotation) %>%
dplyr::gather(axis, value, -time)
tidyr= st %>%
st ::mutate(time = lubridate::as_datetime(time)) %>%
dplyr::as_tibble()
dplyr= st %>%
st ::filter(time >= min(dat$time) & time <= max(dat$time))
dplyr%>%
dat ::ggplot(ggplot2::aes(x = time, y = value, colour = axis)) +
ggplot2::geom_line() +
ggplot2::geom_vline(data = st, ggplot2::aes(xintercept = time))
ggplot2 }
The main caveat is that stepcount
is very precise in the
format of the data, primarily it must have the columns
time
, x
, y
, and z
in
the data.
stepcount
(data frame)Alternatively, you can pass out a data.frame
, rename the
columns to what you need them to be and then run stepcount
on that:
head(df)
#> # A tibble: 6 × 5
#> time x y z annotation
#> <dttm> <dbl> <dbl> <dbl> <dbl>
#> 1 2019-07-22 14:34:45.890 -0.735 -0.274 -0.481 0
#> 2 2019-07-22 14:34:45.900 -0.591 -0.330 -0.466 0
#> 3 2019-07-22 14:34:45.910 -0.468 -0.496 -0.529 0
#> 4 2019-07-22 14:34:45.920 -0.389 -0.750 -0.670 0
#> 5 2019-07-22 14:34:45.930 -0.369 -1.00 -0.949 0
#> 6 2019-07-22 14:34:45.940 -0.371 -1.17 -1.36 0
= stepcount(file = df)
out_df #> Writing file to CSV...
#> Loading model...
#> Gravity calibration...Gravity calibration... Done! (0.04s)
#> Nonwear detection...Nonwear detection... Done! (0.03s)
#> Resampling...Resampling... Done! (0.06s)
#> Predicting from Model
#> Running step counter...
#> Defining windows...
#> Using local /Users/johnmuschelli/miniconda3/envs/stepcount/lib/python3.9/site-packages/stepcount/torch_hub_cache/OxWearables_ssl-wearables_v1.0.0
#> Classifying windows...
#> Processing Result
Which gives same output for this data:
all.equal(out[c("steps", "walking", "step_times")],
c("steps", "walking", "step_times")])
out_df[#> [1] TRUE
stepcount
on multiple filesWhen you pass in multiple files, stepcount
will run all
of them, but it will only load the model once, which can have savings,
but the results are still in memory:
if (stepcount_check()) {
= stepcount(file = c(file, file))
out2 length(out2)
names(out2)
# all.equal(out[c("steps", "walking", "step_times")],
# out2[[1]][c("steps", "walking", "step_times")])
}#> Loading model...
#> Gravity calibration...Gravity calibration... Done! (0.04s)
#> Nonwear detection...Nonwear detection... Done! (0.04s)
#> Resampling...Resampling... Done! (0.06s)
#> Predicting from Model
#> Running step counter...
#> Defining windows...
#> Using local /Users/johnmuschelli/miniconda3/envs/stepcount/lib/python3.9/site-packages/stepcount/torch_hub_cache/OxWearables_ssl-wearables_v1.0.0
#> Classifying windows...
#> Processing Result
#> Gravity calibration...Gravity calibration... Done! (0.04s)
#> Nonwear detection...Nonwear detection... Done! (0.04s)
#> Resampling...Resampling... Done! (0.06s)
#> Predicting from Model
#> Running step counter...
#> Defining windows...
#> Using local /Users/johnmuschelli/miniconda3/envs/stepcount/lib/python3.9/site-packages/stepcount/torch_hub_cache/OxWearables_ssl-wearables_v1.0.0
#> Classifying windows...
#> Processing Result
#> NULL
The model_type
parameter indicates the type of model
being run, and the rf
will provide the predictions from a
random forest
if (stepcount_check()) {
= stepcount(file = file, model_type = "rf")
out_rf }
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.