The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Stochastic Process Model (SPM)

Features

Data simulation

Optimisation

Data imputation (censored time-to-event data imputation)

How to install

Note: for Windows, please install Rtools: https://cran.r-project.org/bin/windows/Rtools/ Note: compilation under Windows may fail if you run Windows on a virtual machine! Then:

install.packages("devtools")
library(devtools)
install_github("izhbannikov/spm")

Examples

Test discrete simulation

library(stpm)
## Test discrete
data <- simdata_discr(N=1000)
pars <- spm_discrete(data)
pars

Test projection

library(stpm)
# Setting up the model
model.par <- list()
model.par$a <- matrix(c(-0.05, 1e-3, 2e-3, -0.05), nrow=2, ncol=2, byrow=TRUE)
model.par$f1 <- matrix(c(90, 35), nrow=1, ncol=2)
model.par$Q <- matrix(c(1e-8, 1e-9, 1e-9, 1e-8), nrow=2, ncol=2, byrow=TRUE)
model.par$f <- matrix(c(80, 27), nrow=1, ncol=2)
model.par$b <- matrix(c(6, 2), nrow=2, ncol=2)
model.par$mu0 <- 1e-5
model.par$theta <- 0.11
# Projection
# Discrete-time model
data.proj.discrete <- spm_projection(model.par, N=100, ystart=c(80, 27), tstart=c(30, 60))
plot(data.proj.discrete$stat$srv.prob, xlim = c(30, 115))
# Continuous-time model
data.proj.continuous <- spm_projection(model.par, N=100, ystart=c(80, 27), model="continuous", gomp=TRUE)
plot(data.proj.continuous$stat$srv.prob, xlim = c(30, 115))

Time-dependent model

library(stpm)
model.par <- list(at = "-0.05", f1t = "80", Qt = "2e-8", ft= "80", bt = "5", mu0t = "1e-5*exp(0.11*t)")
data.proj.time_dependent <- spm_projection(model.par, N=100, ystart=80, model="time-dependent")
plot(data.proj.time_dependent$stat$srv.prob, xlim = c(30,105))

Test prepare_data()

library(stpm)
data <- prepare_data(x=system.file("data","longdat.csv",package="stpm"))
head(data[[1]])
head(data[[2]])

Test sim_pobs()

library(stpm)
dat <- sim_pobs(N=500)
head(dat)

Test spm_pobs()

library(stpm)
#Reading the data:
data <- sim_pobs(N=100)
head(data)
#Parameters estimation:
pars <- spm_pobs(x=data)
pars

Test simdata_cont()

library(stpm)
dat <- simdata_cont(N=50)
head(dat)

Test simdata_discr()

library(stpm)
data <- simdata_discr(N=100)
head(data)

Test simdata_time-dep()

library(stpm)
dat <- simdata_time_dep(N=100)
head(dat)

Test spm_continuous()

library(stpm)
data <- simdata_cont(N=50)
pars <- spm_continuous(dat=data,a=-0.05, f1=80, Q=2e-8, f=80, b=5, mu0=2e-5)
pars

Test spm_discrete()

library(stpm)
data <- simdata_discr(N=10)
pars <- spm_discrete(data)
pars

Test spm()

library(stpm)
data.continuous <- simdata_cont(N=1000)
data.discrete <- simdata_discr(N=1000)
data <- list(data.continuous, data.discrete)
p.discr.model <- spm(data)
p.discr.model
p.cont.model <- spm(data, model="continuous")
p.cont.model
p.td.model <- spm(data, model="time-dependent",formulas=list(at="aa*t+bb", f1t="f1", Qt="Q", ft="f", bt="b", mu0t="mu0"), start=list(a=-0.001, bb=0.05, f1=80, Q=2e-8, f=80, b=5, mu0=1e-3))
p.td.model

Multiple imputation with spm.impute(…)

The SPM offers longitudinal data imputation with results that are better than from other imputation tools since it preserves data structure, i.e. relation between Y(t) and mu(Y(t),t). Below there are two examples of multiple data imputation with function spm.impute(…).

library(stpm)

#######################################################
############## One dimensional case ###################
#######################################################

# Data preparation (short format)#
data <- simdata_discr(N=1000, dt = 2, format="short")

miss.id <- sample(x=dim(data)[1], size=round(dim(data)[1]/4)) # ~25% missing data
incomplete.data <- data
incomplete.data[miss.id,4] <- NA
# End of data preparation #

##### Multiple imputation with SPM #####
imp.data <- spm.impute(x=incomplete.data, id=1, case="xi", t1=3, covariates="y1", minp=1, theta_range=seq(0.075, 0.09, by=0.001))$imputed

##### Look at the incomplete data with missings #####
head(incomplete.data)

##### Look at the imputed data #####
head(imp.data)


#########################################################
################ Two-dimensional case ###################
#########################################################

# Parameters for data simulation #
a <- matrix(c(-0.05, 0.01, 0.01, -0.05), nrow=2)
f1 <- matrix(c(90, 30), nrow=1, byrow=FALSE)
Q <- matrix(c(1e-7, 1e-8, 1e-8, 1e-7), nrow=2)
f0 <- matrix(c(80, 25), nrow=1, byrow=FALSE)
b <- matrix(c(5, 3), nrow=2, byrow=TRUE)
mu0 <- 1e-04
theta <- 0.07
ystart <- matrix(c(80, 25), nrow=2, byrow=TRUE)

# Data preparation #
data <- simdata_discr(N=1000, a=a, f1=f1, Q=Q, f=f0, b=b, ystart=ystart, mu0 = mu0, theta=theta, dt=2, format="short")

# Delete some observations in order to have approx. 25% missing data
incomplete.data <- data
miss.id <- sample(x=dim(data)[1], size=round(dim(data)[1]/4)) 
incomplete.data <- data
incomplete.data[miss.id,4] <- NA
miss.id <- sample(x=dim(data)[1], size=round(dim(data)[1]/4)) 
incomplete.data[miss.id,5] <- NA
# End of data preparation #

##### Multiple imputation with SPM #####
imp.data <- spm.impute(x=incomplete.data, id=1, case="xi", t1=3, covariates=c("y1", "y2"), minp=1, theta_range=seq(0.060, 0.07, by=0.001))$imputed

##### Look at the incomplete data with missings #####
head(incomplete.data)

##### Look at the imputed data #####
head(imp.data)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.