The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The package provides support for modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. The package provides:
Additional packages in the stream family are:
To cite package ‘stream’ in publications use:
Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1-50. doi:10.18637/jss.v076.i14 https://doi.org/10.18637/jss.v076.i14.
@Article{,
title = {Introduction to {stream}: An Extensible Framework for Data Stream Clustering Research with {R}},
author = {Michael Hahsler and Matthew Bola{\~n}os and John Forrest},
journal = {Journal of Statistical Software},
year = {2017},
volume = {76},
number = {14},
pages = {1--50},
doi = {10.18637/jss.v076.i14},
}
Stable CRAN version: Install from within R with
Current development version: Install from r-universe.
install.packages("stream",
repos = c("https://mhahsler.r-universe.dev". "https://cloud.r-project.org/"))
Load the package and a random data stream with 3 Gaussian clusters and 10% noise and scale the data to z-scores.
library("stream")
set.seed(2000)
stream <- DSD_Gaussians(k = 3, d = 2, noise = 0.1) %>%
DSF_Scale()
get_points(stream, n = 5)
## X1 X2 .class
## 1 -0.267 -0.802 2
## 2 0.531 1.078 NA
## 3 -0.706 1.427 3
## 4 -0.781 1.355 3
## 5 1.170 -0.712 1
Cluster a stream of 1000 points using D-Stream which estimates point density in grid cells.
## Evaluation results for micro-clusters.
## Points were assigned to micro-clusters.
##
## numPoints numMicroClusters numMacroClusters
## 100.0000 65.0000 3.0000
## noisePredicted SSQ silhouette
## 23.0000 0.1696 0.0786
## average.between average.within max.diameter
## 1.7809 0.5816 3.9368
## min.separation ave.within.cluster.ss g2
## 0.0146 0.5217 0.1596
## pearsongamma dunn dunn2
## 0.0637 0.0037 0.0154
## entropy wb.ratio numClasses
## 3.1721 0.3266 4.0000
## noiseActual noisePrecision outlierJaccard
## 16.0000 0.6957 0.6957
## precision recall F1
## 0.6170 0.1618 0.2563
## purity Euclidean Manhattan
## 0.9920 0.1633 0.3000
## Rand cRand NMI
## 0.7620 0.1688 0.5551
## KP angle diag
## 0.2651 0.3000 0.3000
## FM Jaccard PS
## 0.3159 0.1470 0.0541
## vi
## 2.2264
## attr(,"type")
## [1] "micro"
## attr(,"assign")
## [1] "micro"
Outlier detection using DBSTREAM which uses micro-clusters with a given radius.
evaluate_static(dso, stream, n = 100, measure = c("numPoints", "noiseActual", "noisePredicted",
"noisePrecision"))
## Evaluation results for micro-clusters.
## Points were assigned to micro-clusters.
##
## numPoints noiseActual noisePredicted noisePrecision
## 100 7 7 1
## attr(,"type")
## [1] "micro"
## attr(,"assign")
## [1] "micro"
Preparing complete stream process pipelines that can be run using a single update()
call.
pipeline <- DSD_Gaussians(k = 3, d = 2, noise = 0.1) %>%
DSF_Scale() %>%
DST_Runner(DSC_DStream(gridsize = 0.1))
pipeline
## DST pipline runner
## DSD: Gaussian Mixture (d = 2, k = 3)
## + scaled
## DST: D-Stream
## Class: DST_Runner, DST
## D-Stream
## Class: DSC_DStream, DSC_Micro, DSC_R, DSC
## Number of micro-clusters: 160
## Number of macro-clusters: 13
The development of the stream package was supported in part by NSF IIS-0948893, NSF CMMI 1728612, and NIH R21HG005912.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.