The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This package is designed to allow the user to apply multiple machine
learning methods by calling simple commands for data exploration.
Python
has a library, called PyCaret
, which
uses pipeline processes for fitting multiple models with a few lines of
code. The stressor
package uses the reticulate
package to allow python
to be run in R
, giving
access to the same tools that exist in python
. One of the
strengths of R
is exploration. The stressor
package gives you the freedom to explore the machine learning models
side by side.
To get started, stressor
requires that you have
Python
3.8.10 installed on your computer. To install
Python
, please follow the instructions provided at:
https://www.python.org/downloads/release/python-3810/
Once Python is installed, you can install stressor
from
CRAN. For your convenience, we have attached stressor
with
the library
statement to use the python
features of stressor.
It is convenient when testing new functions or algorithms to be able to generate toy data sets. With these toy data sets, we can choose the distribution of the parameters, of the error term, and the underlying model of the toy data set.
In this section, we will show an example of generating linear data with an epsilon and intercept that we chose. We will generate 500 observations from a linear model with five independent variables and a y-intercept of zero. Observations are simulated from this model assuming that the residuals follow a normal distribution with a mean of zero and a standard deviation of one. With respect to the variables chosen, each variable is sampled from a normal distribution with mean zero and standard deviation of one. For this case, we chose to let the coefficients on each term be one, as we wanted each independent variable to be equally weighted. When we create the response variable, Y, it is the sum of each independent variable plus an epsilon term that is sampled from a standard normal distribution.
set.seed(43421)
lm_data <- data_gen_lm(500, weight_vec = rep(1, 5), y_int = 0, resp_sd = 1)
head(lm_data)
#> Y V1 V2 V3 V4 V5
#> 1 1.5101730 0.9493875 -0.2231050 0.7501904 0.31629917 -0.41787475
#> 2 2.0124439 1.4844310 1.0737816 -1.8404303 0.85267167 -0.96389423
#> 3 2.6647624 -0.3505283 -0.3922640 0.7192181 0.05188511 1.60003509
#> 4 3.9270489 2.2945235 -0.8998011 0.1046142 1.45699275 1.01588132
#> 5 2.6975509 0.8574341 -0.9723329 -0.9897257 2.80821651 0.00363803
#> 6 0.8071714 0.7676524 -1.2666080 0.5582797 -0.80401673 0.12742990
Below is a visual of when we know the standard deviation of the epsilon term. We can show that our models fit the data if we are close to the theoretical error. In the graphic below, the black dots represent the value given the current epsilon that we are on. The red line represents the expected theoretical error.
In this section, we will demonstrate a typical workflow using the
functions of this package to explore the machine learning models (mlm)
that are accessible through the PyCaret
module in
python
. First, we need to create a virtual environment for
the PyCaret
module to exist in. The first time you run this
code it will take some time (~ 5 min), as it needs to install the
necessary modules into the virtual environment. Note that this virtual
environment will be about 1 GB of space on the user’s disk.
PyCaret
recommends that its library be used in a virtual
environment. A virtual environment is a separate partition of
python
that can have a specific python
version
installed, as well as other python
libraries. This enables
the tools needed to be contained without disturbing the main version of
python
installed.
Once installed, the following message will be shown after you execute the code indicating that you are now using the virtual environment.
See the troubleshoot section if other errors appear. The
only time you will need to install a new environment is if you decide to
delete a stressor
environment and need to initiate a new
one. You do not need to install a new environment for each
R
session, it is one and done. These environments are
stored inside the python
module on your computer.
To begin using, we need to create all the mlm. This may take a moment
(< 3 min) the first time you run it, as the PyCaret
module needs to be imported. Then depending on your data size it may
take a moment (< 5 min for data <10,000) to fit the data. Note
that console output will be shown and a progress bar will be displayed
showing the progress of the fitting.
For reproducibility, we have set the seed again and have defined a
new data set, and set the seed for the python
side by
passing the seed to the function. Here are the commands:
set.seed(43421)
lm_data <- data_gen_lm(1000)
# Split the data into a 80/20 split
indices <- split_data_prob(lm_data, .8)
train <- lm_data[indices, ]
test <- lm_data[!indices, ]
# Tune the models
mlm_lm <- mlm_regressor(Y ~ ., lm_data, sort_v = 'RMSE', seed = 43421)
Now, we can look at the initial training predictive accuracy measures
such as RMSE. The mlm_lm
is a list object where the first
element is a list of all the models that were fitted. For example, if we
were to pass these models back to PyCaret
, they can be
refitted or used again for predictions. The second element is a data
frame for the initial values and the corresponding models. If you want
to specify the models that are fitted, you can change the
fit_models
parameter – a character vector – specifying the
models to be used. Also we can change how the models are sorted based
upon the metrics listed which is given to the sort_v
variable.
#> Model MAE MSE RMSE R2 RMSLE
#> lr Linear Regression 0.8345 1.0955 1.0429 0.8261 0.3664
#> ridge Ridge Regression 0.8344 1.0955 1.0429 0.8261 0.3664
#> lar Least Angle Regression 0.8345 1.0955 1.0429 0.8261 0.3664
#> br Bayesian Ridge 0.8344 1.0955 1.0429 0.8261 0.3664
#> huber Huber Regressor 0.8356 1.0976 1.0440 0.8259 0.3671
#> gbr Gradient Boosting Regressor 1.0308 1.6365 1.2731 0.7425 0.4293
#> et Extra Trees Regressor 0.9922 1.6474 1.2785 0.7406 0.4308
#> knn K Neighbors Regressor 1.0231 1.6798 1.2936 0.7336 0.4390
#> lightgbm Light Gradient Boosting Machine 1.0432 1.7054 1.3013 0.7303 0.4331
#> rf Random Forest Regressor 1.0448 1.7751 1.3253 0.7221 0.4406
#> ada AdaBoost Regressor 1.1535 2.1419 1.4542 0.6656 0.4869
#> par Passive Aggressive Regressor 1.2356 2.4503 1.5240 0.6015 0.4654
#> en Elastic Net 1.4439 3.3031 1.8107 0.4877 0.6173
#> dt Decision Tree Regressor 1.5140 3.6288 1.8966 0.4181 0.5561
#> omp Orthogonal Matching Pursuit 1.8988 5.6044 2.3593 0.1243 0.6988
#> lasso Lasso Regression 1.9174 5.7881 2.3973 0.1022 0.9362
#> llar Lasso Least Angle Regression 1.9174 5.7881 2.3973 0.1022 0.9362
#> dummy Dummy Regressor 2.0239 6.5123 2.5450 -0.0132 1.0254
#> MAPE TT (Sec)
#> lr 1.5432 0.009
#> ridge 1.5407 0.009
#> lar 1.5432 0.008
#> br 1.5405 0.009
#> huber 1.5460 0.010
#> gbr 1.8618 0.115
#> et 1.6469 0.133
#> knn 1.7811 0.009
#> lightgbm 2.0825 0.037
#> rf 1.6010 0.251
#> ada 1.5053 0.069
#> par 2.2490 0.009
#> en 1.0218 0.009
#> dt 2.2846 0.011
#> omp 2.1174 0.009
#> lasso 1.0678 0.009
#> llar 1.0678 0.008
#> dummy 1.0414 0.007
We pulled out a test validation set and we can currently check the accuracy measures of those predicted values, such as RMSE.
#> rmse mae mse r2 rmsle mape
#> lr 0.9811816 0.7855389 0.9627174 0.8489721348 0.1575507 1.787733
#> ridge 0.9814217 0.7857800 0.9631885 0.8488982396 0.1576890 1.785325
#> lar 0.9811817 0.7855389 0.9627175 0.8489721181 0.1575508 1.787733
#> br 0.9814372 0.7857951 0.9632189 0.8488934604 0.1576978 1.785174
#> huber 0.9810649 0.7866087 0.9624883 0.8490080733 0.1576332 1.784634
#> gbr 1.1519822 0.8913621 1.3270630 0.7918148288 0.1819330 1.779195
#> et 1.2112827 0.9544208 1.4672058 0.7698296888 0.2063202 1.538019
#> knn 1.2961473 1.0304869 1.6799978 0.7364476099 0.2127031 1.447863
#> lightgbm 1.1740861 0.9132695 1.3784782 0.7837489759 0.1870156 1.385519
#> rf 1.2685104 0.9956673 1.6091187 0.7475668762 0.2078816 1.752251
#> ada 1.4734451 1.1557082 2.1710406 0.6594144709 0.2363207 1.464789
#> par 2.2243526 1.8216665 4.9477444 0.2238145292 0.2836395 3.536359
#> en 1.7919837 1.4126925 3.2112056 0.4962368798 0.2888262 1.161516
#> dt 1.9384331 1.4986607 3.7575229 0.4105324586 0.3019004 1.988530
#> omp 2.2605309 1.7922139 5.1100000 0.1983604118 0.3411484 1.932450
#> lasso 2.3843600 1.8606841 5.6851724 0.1081293000 0.3579984 1.037209
#> llar 2.3843599 1.8606841 5.6851724 0.1081293122 0.3579984 1.037209
#> dummy 2.5257071 1.9860032 6.3791965 -0.0007468551 0.3739615 1.065824
In comparison, we can fit this data using the lm()
function and check the initial predictive accuracy with simple test
data.
test_index <- split_data_prob(lm_data, .2)
test <- lm_data[test_index, ]
train <- lm_data[!test_index, ]
lm_test <- lm(Y ~ ., train)
lm_pred <- predict(lm_test, newdata = test)
lm_score <- score(test$Y, lm_pred)
lm_score
#> RMSE MAE MSE R2 RMSLE MAPE
#> 0.9716537 0.7793268 0.9441110 0.8095243 0.1563934 1.0339178
As we look at this initial result, we see that there are some
comparable models to the RMSE generated from lm()
(which is
0.97 compared to 0.98 fitted by Huber Regressor). We see that the mlm
outperforms the models that were fitted by lm()
. However,
it is not clear from this output alone whether the better performance
observed from the lm model is statistically significant. A better
practice would be performing a cross-validation.
In this code we are fitting the mlm_lm
and
lm_test
to the lm_data
using a 10 fold
cross-validation.
First the ML models:
Then the lm_test
:
Now to compare the corresponding RMSE.
score(lm_data$Y, mlm_cv)
#> RMSE MAE MSE R2 RMSLE MAPE
#> lr 2.364924 1.870219 5.592865 -0.9244870 0.2981139 2.776382
#> ridge 2.363766 1.869422 5.587389 -0.9226029 0.2979252 2.773871
#> lar 2.364924 1.870219 5.592865 -0.9244870 0.2981139 2.776382
#> br 2.363785 1.869435 5.587481 -0.9226344 0.2979288 2.773913
#> huber 2.353164 1.861261 5.537381 -0.9053951 0.2965040 2.761076
#> gbr 2.311607 1.828339 5.343527 -0.8386907 0.2905366 2.638235
#> et 2.269689 1.806269 5.151489 -0.7726111 0.2854914 2.508345
#> knn 2.335107 1.855689 5.452724 -0.8762651 0.2938159 2.636042
#> lightgbm 2.372964 1.869536 5.630957 -0.9375943 0.2985878 2.837477
#> rf 2.281818 1.817093 5.206693 -0.7916066 0.2870201 2.552018
#> ada 2.186354 1.754228 4.780145 -0.6448326 0.2771474 2.193652
#> par 2.576865 2.055230 6.640235 -1.2848838 0.2992653 3.583453
#> en 2.124765 1.711973 4.514628 -0.5534691 0.2731174 1.411179
#> dt 2.716927 2.166145 7.381690 -1.5400162 0.3503943 3.437621
#> omp 2.421582 1.945890 5.864059 -1.0178041 0.3030696 1.884166
#> lasso 2.355189 1.899553 5.546917 -0.9086763 0.3000909 1.058293
#> llar 2.355189 1.899553 5.546917 -0.9086763 0.3000909 1.058293
#> dummy 2.414994 1.947364 5.832195 -1.0068397 0.3066178 1.023737
score(lm_data$Y, lm_cv)
#> RMSE MAE MSE R2 RMSLE MAPE
#> 1.0640627 0.8360287 1.1322295 0.8052017 0.1406658 1.5685498
We can see that the top five ML models are close in value to the linear model.
We want to show how our functions apply to a real data example. We can simulate data, but it is never quite like observed data. The purpose of this data set is to show the use of the functions in this package – specifically cross-validation. This is crucial to show how these work in comparison to existing functions.
We will be using the Boston Housing Data from the
mlbench
package. There are two versions of this data, the
second version includes a corrected medv
value,
standardizing the median income to USD 1000’s. As some of the original
data was missing. This data version also has had the town, tract,
longitude and latitude added. For this analysis, we are ignoring spatial
autocorrelation and therefore will be removing these variables from the
analysis.
This next code chunk opens the cleaned Boston data set attached to this package and fits the initial machine learning models. It then displays the initial values from the first fit.
#> Model MAE MSE RMSE R2 RMSLE
#> gbr Gradient Boosting Regressor 2.1218 9.7524 3.0077 0.8615 0.1393
#> et Extra Trees Regressor 2.1753 11.2063 3.1583 0.8453 0.1414
#> rf Random Forest Regressor 2.2152 11.2131 3.2292 0.8441 0.1467
#> lightgbm Light Gradient Boosting Machine 2.4390 13.9694 3.6343 0.8122 0.1570
#> ada AdaBoost Regressor 2.7002 15.1353 3.7275 0.7950 0.1755
#> dt Decision Tree Regressor 3.0190 20.6916 4.4073 0.7180 0.2007
#> lr Linear Regression 3.3687 24.0099 4.7956 0.6858 0.2453
#> ridge Ridge Regression 3.3493 24.0915 4.7963 0.6849 0.2513
#> lar Least Angle Regression 3.4298 24.4397 4.8504 0.6785 0.2473
#> br Bayesian Ridge 3.3931 24.7832 4.8727 0.6777 0.2589
#> huber Huber Regressor 3.3622 27.7117 5.0719 0.6496 0.2931
#> en Elastic Net 3.5681 27.9055 5.1803 0.6461 0.2562
#> lasso Lasso Regression 3.6315 29.0143 5.2788 0.6328 0.2506
#> llar Lasso Least Angle Regression 3.6315 29.0141 5.2788 0.6328 0.2506
#> knn K Neighbors Regressor 3.9844 33.5862 5.7336 0.5557 0.2237
#> omp Orthogonal Matching Pursuit 5.5777 62.2987 7.7159 0.2226 0.3140
#> dummy Dummy Regressor 6.4549 78.6894 8.7760 -0.0148 0.3798
#> par Passive Aggressive Regressor 7.1163 83.3044 8.9282 -0.1049 0.4482
#> MAPE TT (Sec)
#> gbr 0.1106 0.122
#> et 0.1115 0.151
#> rf 0.1148 0.263
#> lightgbm 0.1197 0.056
#> ada 0.1439 0.091
#> dt 0.1550 0.035
#> lr 0.1706 0.035
#> ridge 0.1708 0.035
#> lar 0.1737 0.035
#> br 0.1730 0.035
#> huber 0.1731 0.051
#> en 0.1724 0.035
#> lasso 0.1735 0.034
#> llar 0.1735 0.036
#> knn 0.1832 0.033
#> omp 0.2728 0.032
#> dummy 0.3508 0.032
#> par 0.3716 0.034
Observe the initial values for the Boston data set. Now compare these to the cross-validated values.
mlm_boston_cv <- cv(mlm_boston, boston, n_folds = 10)
mlm_boston_score <- score(boston$cmedv, mlm_boston_cv)
mlm_boston_score
#> RMSE MAE MSE R2 RMSLE MAPE
#> gbr 2.880214 2.096367 8.295632 0.901413505 0.03826106 0.1097795
#> et 3.095790 2.038773 9.583918 0.886103331 0.04008861 0.1035976
#> rf 3.091200 2.145828 9.555518 0.886440846 0.04044387 0.1106439
#> lightgbm 3.223722 2.129938 10.392383 0.876495421 0.04176346 0.1082107
#> ada 3.582974 2.773172 12.837703 0.847434883 0.04837222 0.1497296
#> dt 4.485803 2.837352 20.122431 0.760862124 0.05795620 0.1437426
#> lr 4.908502 3.451202 24.093388 0.713670689 0.06492690 0.1745373
#> ridge 4.931873 3.439230 24.323376 0.710937485 0.06533195 0.1745591
#> lar 4.909012 3.469367 24.098402 0.713611106 0.06523700 0.1759787
#> br 5.006509 3.486602 25.065131 0.702122364 0.06636305 0.1770225
#> huber 5.584459 3.587230 31.186187 0.629378842 0.07572677 0.1812409
#> en 5.328285 3.710624 28.390621 0.662601752 0.06863061 0.1788665
#> lasso 5.386974 3.754152 29.019492 0.655128160 0.06925798 0.1803929
#> llar 5.386960 3.754145 29.019338 0.655129997 0.06925790 0.1803927
#> knn 5.836711 4.009170 34.067194 0.595140547 0.07285509 0.1819197
#> omp 8.116394 5.873471 65.875855 0.217121821 0.10323051 0.2868320
#> dummy 9.183814 6.643323 84.342437 -0.002337712 0.11942902 0.3630920
#> par 8.937533 6.676229 79.879500 0.050700482 0.12318012 0.3213036
Clustered cross-validation is subsetting the parameter space into groups that share similar attributes with one another. Therefore, if we train on those groups the other group should fit similarly across the test group.
Now, compare to the clustered cross-validation:
mlm_boston_clust_cv <- cv(mlm_boston, boston, n_folds = 10, k_mult = 5)
mlm_boston_clust_score <- score(boston$cmedv, mlm_boston_clust_cv)
mlm_boston_clust_score
#> RMSE MAE MSE R2 RMSLE MAPE
#> gbr 3.752646 2.722356 14.08235 0.8326433 0.04915424 0.1408009
#> et 3.665735 2.566496 13.43761 0.8403055 0.04730942 0.1309730
#> rf 4.154256 2.798413 17.25785 0.7949053 0.05368193 0.1450138
#> lightgbm 4.023057 2.752783 16.18499 0.8076553 0.05210606 0.1408062
#> ada 4.433633 3.332406 19.65710 0.7663922 0.05852669 0.1778279
#> dt 5.394398 3.608300 29.09953 0.6541770 0.06953791 0.1882557
#> lr 5.879360 4.278917 34.56687 0.5892023 0.07986385 0.2287874
#> ridge 5.741469 4.099545 32.96447 0.6082455 0.07815901 0.2207254
#> lar 6.092678 4.370884 37.12072 0.5588520 0.08399236 0.2395658
#> br 5.808605 4.075319 33.73989 0.5990303 0.07884975 0.2192994
#> huber 6.444105 4.469043 41.52649 0.5064932 0.08726243 0.2302259
#> en 5.900504 4.247760 34.81595 0.5862423 0.07639839 0.2110481
#> lasso 6.105984 4.411099 37.28304 0.5569229 0.07907545 0.2195190
#> llar 6.106000 4.411162 37.28323 0.5569207 0.07907643 0.2195278
#> knn 8.027975 5.668933 64.44838 0.2340862 0.10082338 0.2561170
#> omp 8.542734 6.256828 72.97830 0.1327154 0.10913893 0.3073734
#> dummy 9.640141 7.050797 92.93233 -0.1044212 0.12579351 0.3862600
#> par 21.356794 14.663207 456.11264 -4.4205085 0.18068971 0.8859428
What we notice about this result is when we ignore spatial autocorrelation and we compare the 10 fold cross-validation with the clustered cross-validation, we see a general improvement in the values. This suggests that maybe there is some other underlying factors, i.e. spatial relationships.
The power to be able to explore is a compliment to the purpose of R.
With stressor
, you are able to fit multiple machine
learning models with a few lines of code and perform 10 fold
cross-validation and clustered cross-validation. With a simple command,
you can return the values from the predictions.
When initiating the virtual environment, you may receive some errors
or warnings. reticulate
has done a nice job with the error
handling of initiating the virtual environments. reticulate
is a package in R
that handles the connection between
R
and python
.
For MacOS and Linux, please note that the
create_virtualenv()
function will not work unless you have
cmake
. lightgbm
requires this compiler and
they have detailed instructions of how to install it, see
here.
If your system is not recognizing the python
path that
you have, you will need to add it to your system variables, or specify
initially the python path that create_virtualenv()
needs to
use. If you are still having trouble getting the virtual environment to
start you can use reticulate
’s function
reticulate::use_virtualenv()
. It also helps sometimes to
unset the RETICULATE_PYTHON
variable. Also note that if the
environment has python
objects in it the user will have to
clear them to restart the reticulate
python
version.
If you receive a warning that says
“Warning Message: Previous request to use_python() … will be ignored. It is superseded by request to use_python()”
If the second use_python
command has the matching
virtual environment you can ignore this warning and continue with your
analysis.
If you receive an error stating
ERROR: The requested version of Python … cannot be used, as another version of Python … has already been initialized. Please restart the R session if you need to attach reticulate to a different version of Python.
If this error appears, restart your R session and make sure to clear
all python
objects. Then run the
create_virtualenv()
function again. There should be no
problems attaching it after that, as long as your environment does not
contain any Python
objects.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.