The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
symengine is an R interface to the SymEngine C++ library
for symbolic computation.
There are some dependencies needed on Unix systems. You may install them with
zypper install cmake gmp-devel mpfr-devel mpc-devel ## openSUSE
dnf install cmake gmp-devel mpfr-devel libmpc-devel ## Fedora
apt install cmake libgmp-dev libmpfr-dev libmpc-dev ## Debian
brew install cmake gmp mpfr libmpc ## Mac OS
Then you can install the R package with
devtools::install_github("symengine/symengine.R")On Windows, you will need to install Rtools42 for building the package from source.
Please report any problem installing the package on your system.
library(symengine)
#> SymEngine Version: 0.9.0
#> _____ _____ _
#> | __|_ _ _____| __|___ ___|_|___ ___
#> |__ | | | | __| | . | | | -_|
#> |_____|_ |_|_|_|_____|_|_|_ |_|_|_|___|
#> |___| |___|Also check the documentation site with built vignettes and help pages at http://symengine.marlin.pub.
use_vars(x, y, z)
#> Initializing 'x', 'y', 'z'
expr <- (x + y + z) ^ 2L - 42L
expand(expr)
#> (Add) -42 + 2*x*y + 2*x*z + 2*y*z + x^2 + y^2 + z^2Substitue z as a and y as
x^2.
a <- S("a")
expr <- subs(expr, z, a)
expr <- subs(expr, y, x^2L)
expr
#> (Add) -42 + (a + x + x^2)^2Second derivative of expr with regards to
x:
d1_expr <- D(expr, "x")
d2_expr <- D(d1_expr, "x")
expand(d2_expr)
#> (Add) 2 + 4*a + 12*x + 12*x^2Solve the equation of d2_expr == 0 with regards to
x.
solutions <- solve(d2_expr, "x")
solutions
#> VecBasic of length 2
#> V( -1/2 + (-1/2)*sqrt(1 + (-1/3)*(2 + 4*a)), -1/2 + (1/2)*sqrt(1 + (-1/3)*(2 + 4*a)) )For the two solutions above, we can convert them into a function that gives numeric output with regards to given input.
func <- as.function(solutions)
ans <- func(a = -100:-95)
colnames(ans) <- c("Solution1", "Solution2")
ans
#> Solution1 Solution2
#> [1,] -6.280715 5.280715
#> [2,] -6.251811 5.251811
#> [3,] -6.222762 5.222762
#> [4,] -6.193564 5.193564
#> [5,] -6.164215 5.164215
#> [6,] -6.134714 5.134714The next prime number greater than 2^400.
n <- nextprime(S(~ 2 ^ 400))
n
#> (Integer) 2582249878086908589655919172003011874329705792829223512830659356540647622016841194629645353280137831435903171972747493557The greatest common divisor between the prime number and 42.
GCD(n, 42)
#> (Integer) 1The binomial coefficient (2^30 ¦ 5).
choose(S(~ 2^30), 5L)
#> (Integer) 11893730661780666387808571314613824587300864Pi “computed” to 400-bit precision number.
if (symengine_have_component("mpfr"))
evalf(Constant("pi"), bits = 400)
#> (RealMPFR,prec400) 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066x + y == S("x + y")
#> [1] TRUE
x + y != S("x + y")
#> [1] FALSEsin(x)/cos(x)
#> (Mul) sin(x)/cos(x)
tan(x) == sin(x)/cos(x) # Different internal representation
#> [1] FALSEThis project was a Google Summer of Code project under the organization of The R Project for Statistical Computing in 2018. The student was Xin Chen, mentored by Jialin Ma and Isuru Fernando.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.