The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
teal
application to use response plot with various
datasets typesThis vignette will guide you through the four parts to create a
teal
application using various types of datasets using the
response plot module tm_g_response()
:
app
variablelibrary(teal.modules.general) # used to create the app
library(dplyr) # used to modify data sets
Inside this app 4 datasets will be used
ADSL
A wide data set with subject dataADRS
A long data set with response data for subjects at
different time points of the studyADTTE
A long data set with time to event dataADLB
A long data set with lab measurements for each
subject<- teal_data()
data <- within(data, {
data <- teal.modules.general::rADSL %>%
ADSL mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1))
<- teal.modules.general::rADRS
ADRS <- teal.modules.general::rADTTE
ADTTE <- teal.modules.general::rADLB %>%
ADLB mutate(CHGC = as.factor(case_when(
< 1 ~ "N",
CHG > 1 ~ "P",
CHG TRUE ~ "-"
)))
})<- c("ADSL", "ADRS", "ADTTE", "ADLB")
datanames datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]
app
variableThis is the most important section. We will use the
teal::init()
function to create an app. The data will be
handed over using teal.data::teal_data()
. The app itself
will be constructed by multiple calls of tm_g_response()
using different combinations of data sets.
# configuration for the single wide dataset
<- tm_g_response(
mod1 label = "Single wide dataset",
response = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("BMRKR2", "ITTFL", "BEP01FL")),
selected = "BMRKR2",
multiple = FALSE,
fixed = FALSE
)
),x = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("SEX", "RACE", "COUNTRY", "ARMCD", "STRATA1")),
selected = "ARMCD",
multiple = FALSE,
fixed = FALSE
)
)
)
# configuration for the two wide datasets
<- tm_g_response(
mod2 label = "Two wide datasets",
response = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("BMRKR2", "ITTFL", "BEP01FL")),
selected = "BMRKR2",
multiple = FALSE
)
),x = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = c("SEX", "COUNTRY", "RACE", "STRATA1", "ARMCD"),
selected = "ARMCD",
multiple = FALSE
)
)
)
# configuration for the multiple long datasets
<- tm_g_response(
mod3 label = "Multiple long datasets",
response = data_extract_spec(
dataname = "ADLB",
filter = list(
filter_spec(
label = "Select parameter:",
vars = "PARAMCD",
choices = levels(data[["ADLB"]]$PARAMCD),
selected = levels(data[["ADLB"]]$PARAMCD)[1],
multiple = FALSE
),filter_spec(
label = "Select visit:",
vars = "AVISIT",
choices = levels(data[["ADLB"]]$AVISIT),
selected = levels(data[["ADLB"]]$AVISIT)[1],
multiple = FALSE
)
),select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADLB"]], c("BMRKR2", "ITTFL", "BEP01FL")),
selected = "BMRKR2",
multiple = FALSE
)
),x = data_extract_spec(
dataname = "ADRS",
filter = list(
filter_spec(
label = "Select parameter:",
vars = "PARAMCD",
choices = levels(data[["ADRS"]]$PARAMCD),
selected = levels(data[["ADRS"]]$PARAMCD)[3],
multiple = FALSE
),filter_spec(
label = "Select visit:",
vars = "AVISIT",
choices = levels(data[["ADRS"]]$AVISIT),
selected = levels(data[["ADRS"]]$AVISIT)[3],
multiple = FALSE
)
),select = select_spec(
choices = c("AVALC", "ITTFL", "BEP01FL"),
selected = "AVALC",
multiple = FALSE,
fixed = TRUE
)
),row_facet = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = "SEX",
selected = NULL,
multiple = FALSE
)
),col_facet = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("SEX", "COUNTRY")),
selected = NULL,
multiple = FALSE
)
)
)
# configuration for the wide and long dataset
<- tm_g_response(
mod4 label = "Wide and long dataset",
response = data_extract_spec(
dataname = "ADLB",
filter = list(
filter_spec(
vars = "PARAMCD",
choices = levels(data[["ADLB"]]$PARAMCD),
selected = levels(data[["ADLB"]]$PARAMCD)[2],
multiple = TRUE,
label = "Select measurement:"
),filter_spec(
vars = "AVISIT",
choices = levels(data[["ADLB"]]$AVISIT),
selected = levels(data[["ADLB"]]$AVISIT)[2],
multiple = TRUE,
label = "Select visit:"
)
),select = select_spec(
choices = variable_choices(data[["ADLB"]], c("BMRKR2", "ITTFL", "BEP01FL")),
selected = "BMRKR2",
multiple = FALSE,
fixed = FALSE,
label = "Select variable:"
)
),x = data_extract_spec(
dataname = "ADSL",
select = select_spec(
choices = variable_choices(data[["ADSL"]], c("ARMCD", "BMRKR1", "BMRKR2", "BEP01FL")),
selected = "BMRKR2",
multiple = FALSE,
fixed = FALSE
)
)
)
# configuration for the same long datasets (same subsets)
<- tm_g_response(
mod5 label = "Same long datasets (same subsets)",
response = data_extract_spec(
dataname = "ADRS",
select = select_spec(
choices = variable_choices(data[["ADRS"]], c("BMRKR2", "AVALC", "BEP01FL")),
selected = "AVALC",
multiple = FALSE,
fixed = TRUE,
label = "Select variable:"
)
),x = data_extract_spec(
dataname = "ADRS",
select = select_spec(
choices = variable_choices(data[["ADRS"]], c("AVALC", "AGE", "SEX", "ARMCD", "STRATA1")),
selected = "ARMCD",
multiple = FALSE,
fixed = FALSE,
label = "Select variable:"
)
),row_facet = data_extract_spec(
dataname = "ADRS",
select = select_spec(
choices = "PARAMCD",
selected = "PARAMCD",
multiple = FALSE,
fixed = FALSE,
label = "Select variable:"
)
),col_facet = data_extract_spec(
dataname = "ADRS",
select = select_spec(
choices = "AVISIT",
selected = "AVISIT",
multiple = FALSE,
fixed = FALSE,
label = "Select variable:"
)
)
)
# configuration for the same long datasets (different subsets)
<- tm_g_response(
mod6 label = "Same long datasets (different subsets)",
response = data_extract_spec(
dataname = "ADLB",
filter = filter_spec(
vars = "PARAMCD",
choices = levels(data[["ADLB"]]$PARAMCD),
selected = levels(data[["ADLB"]]$PARAMCD)[2],
multiple = FALSE,
label = "Select lab:"
),select = select_spec(
choices = "BMRKR2",
selected = "BMRKR2",
multiple = FALSE,
fixed = TRUE
)
),x = data_extract_spec(
dataname = "ADLB",
filter = filter_spec(
vars = "PARAMCD",
choices = levels(data[["ADLB"]]$PARAMCD),
selected = levels(data[["ADLB"]]$PARAMCD)[1],
multiple = FALSE,
label = "Select lab:"
),select = select_spec(
choices = variable_choices(data[["ADLB"]], c("AVISIT", "PARAMCD", "BEP01FL")),
selected = "AVISIT",
multiple = FALSE,
fixed = TRUE
)
),row_facet = data_extract_spec(
dataname = "ADLB",
filter = list(
filter_spec(
vars = "PARAMCD",
choices = levels(data[["ADLB"]]$PARAMCD),
selected = levels(data[["ADLB"]]$PARAMCD)[1],
multiple = FALSE,
label = "Select lab:"
),filter_spec(
vars = "AVISIT",
choices = levels(data[["ADLB"]]$AVISIT),
selected = levels(data[["ADLB"]]$AVISIT)[1],
multiple = FALSE,
label = "Select visit:"
)
),select = select_spec(
choices = variable_choices(data[["ADLB"]], c("SEX", "RACE", "ARMCD")),
selected = NULL,
multiple = FALSE,
fixed = FALSE,
label = "Select Variable"
)
),col_facet = data_extract_spec(
dataname = "ADLB",
filter = list(
filter_spec(
vars = "PARAMCD",
choices = levels(data[["ADLB"]]$PARAMCD),
selected = levels(data[["ADLB"]]$PARAMCD)[1],
multiple = FALSE,
label = "Select lab:"
),filter_spec(
vars = "AVISIT",
choices = levels(data[["ADLB"]]$AVISIT),
selected = levels(data[["ADLB"]]$AVISIT)[1],
multiple = FALSE,
label = "Select visit:"
)
),select = select_spec(
choices = variable_choices(data[["ADLB"]], c("SEX", "RACE", "ARMCD")),
selected = NULL,
multiple = FALSE,
fixed = FALSE,
label = "Select variable:"
)
)
)
# initialize the app
<- init(
app data = data,
modules = modules(
modules(
label = "Response plot",
mod1,
mod2,
mod3,
mod4,
mod5,
mod6
)
) )
A simple shiny::shinyApp()
call will let you run the
app. Note that app is only displayed when running this code inside an
R
session.
shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.