The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The goal of text2speech is to harmonize various text-to-speech engines, including Amazon Polly, Coqui TTS, Google Cloud Text-to-Speech API, and Microsoft Cognitive Services Text to Speech REST API.
With the exception of Coqui TTS, all these engines are accessible as R packages:
You might notice Coqui TTS doesn’t have its own R package. This is because, at this time, text2speech directly incorporates the functionality of Coqui TTS. The R wrapper of Coqui is under development.
You can install this package from CRAN or the development version from GitHub with:
# Install from CRAN
install.packages("text2speech")
# or the development version from GitHub
# install.packages("devtools")
::install_github("jhudsl/text2speech") devtools
Check for authentication. If not already authenticated, users must individually configure it for each service.
library(text2speech)
# Amazon Polly
tts_auth("amazon")
#> [1] TRUE
# Coqui TTS
tts_auth("coqui")
#> [1] TRUE
# Google Cloud Text-to-Speech API
tts_auth("google")
#> [1] TRUE
# Microsoft Cognitive Services Text to Speech REST API
tts_auth("microsoft")
#> [1] TRUE
List different voice options for each service.
# Amazon Polly
<- tts_amazon_voices()
voices_amazon head(voices_amazon)
#> voice language language_code gender service
#> 1 Zeina Arabic arb Female amazon
#> 2 Zhiyu Chinese Mandarin cmn-CN Female amazon
#> 3 Naja Danish da-DK Female amazon
#> 4 Mads Danish da-DK Male amazon
#> 5 Ruben Dutch nl-NL Male amazon
#> 6 Lotte Dutch nl-NL Female amazon
# Coqui TTS
<- tts_coqui_voices()
voices_coqui #> ℹ Test out different voices on the CoquiTTS Demo (<https://huggingface.co/spaces/coqui/CoquiTTS>)
head(voices_coqui)
#> # A tibble: 6 × 5
#> type language dataset model_name service
#> <chr> <chr> <chr> <chr> <chr>
#> 1 tts_models multilingual multi-dataset your_tts coqui
#> 2 tts_models multilingual multi-dataset bark coqui
#> 3 tts_models bg cv vits coqui
#> 4 tts_models cs cv vits coqui
#> 5 tts_models da cv vits coqui
#> 6 tts_models et cv vits coqui
# Google Cloud Text-to-Speech API
<- tts_google_voices()
voices_google head(voices_google)
#> voice language language_code gender service
#> 1 af-ZA-Standard-A <NA> af-ZA FEMALE google
#> 2 af-ZA-Standard-A <NA> af-ZA FEMALE google
#> 3 ar-XA-Wavenet-C Arabic ar-XA MALE google
#> 4 ar-XA-Standard-C Arabic ar-XA MALE google
#> 5 ar-XA-Standard-D Arabic ar-XA FEMALE google
#> 6 ar-XA-Wavenet-A Arabic ar-XA FEMALE google
# Microsoft Cognitive Services Text to Speech REST API
<- tts_microsoft_voices()
voices_microsoft head(voices_microsoft)
#> voice
#> 1 Microsoft Server Speech Text to Speech Voice (af-ZA, AdriNeural)
#> 2 Microsoft Server Speech Text to Speech Voice (af-ZA, WillemNeural)
#> 3 Microsoft Server Speech Text to Speech Voice (am-ET, MekdesNeural)
#> 4 Microsoft Server Speech Text to Speech Voice (am-ET, AmehaNeural)
#> 5 Microsoft Server Speech Text to Speech Voice (ar-AE, FatimaNeural)
#> 6 Microsoft Server Speech Text to Speech Voice (ar-AE, HamdanNeural)
#> language language_code gender service
#> 1 Afrikaans (South Africa) af-ZA Female microsoft
#> 2 Afrikaans (South Africa) af-ZA Male microsoft
#> 3 Amharic (Ethiopia) am-ET Female microsoft
#> 4 Amharic (Ethiopia) am-ET Male microsoft
#> 5 Arabic (United Arab Emirates) ar-AE Female microsoft
#> 6 Arabic (United Arab Emirates) ar-AE Male microsoft
Synthesize speech with
tts(text = "TEXT", service = "ENGINE")
# Amazon Polly
tts("Hello world!", service = "amazon")
# Coqui TTS
tts("Hello world!", service = "coqui")
# Google Cloud Text-to-Speech API
tts("Hello world!", service = "google")
# Microsoft Cognitive Services Text to Speech REST API
tts("Hello world!", service = "microsoft")
The resulting output will consist of a standardized tibble featuring the following columns:
index
: Sequential identifier numberoriginal_text
: The text input provided by the usertext
: In case original_text
exceeds the
character limit, text
represents the outcome of splitting
original_text
. Otherwise, text
remains the
same as original_text
.wav
: Wave object (S4 class)file
: File path to the audio fileaudio_type
: The audio format, either mp3 or wavduration
: The duration of the audio fileservice
: The text-to-speech engine usedThese binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.