The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
textstem is a tool-set for stemming and lemmatizing words. Stemming is a process that removes affixes. Lemmatization is the process of grouping inflected forms together as a single base form.
The main functions, task category, & descriptions are summarized in the table below:
Function | Task | Description |
---|---|---|
stem_words
|
stemming | Stem words |
stem_strings
|
stemming | Stem strings |
lemmatize_words
|
lemmatizing | Lemmatize words |
lemmatize_strings
|
lemmatizing | Lemmatize strings |
make_lemma_dictionary_words
|
lemmatizing | Generate a dictionary of lemmas for a text |
To download the development version of textstem:
Download the zip ball
or tar
ball, decompress and run R CMD INSTALL
on it, or use
the pacman package to install the development
version:
if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh("trinker/textstem")
You are welcome to:
- submit suggestions and bug-reports at: https://github.com/trinker/textstem/issues
- send a pull request on: https://github.com/trinker/textstem/
- compose a friendly e-mail to:
tyler.rinker@gmail.com
The following examples demonstrate some of the functionality of textstem.
if (!require("pacman")) install.packages("pacman")
pacman::p_load(textstem, dplyr)
data(presidential_debates_2012)
Before moving into the meat these two examples let’s highlight the difference between stemming and lemmatizing.
dw <- c('driver', 'drive', 'drove', 'driven', 'drives', 'driving')
stem_words(dw)
## [1] "driver" "drive" "drove" "driven" "drive" "drive"
lemmatize_words(dw)
## [1] "driver" "drive" "drive" "drive" "drive" "drive"
bw <- c('are', 'am', 'being', 'been', 'be')
stem_words(bw)
## [1] "ar" "am" "be" "been" "be"
lemmatize_words(bw)
## [1] "be" "be" "be" "be" "be"
Stemming is the act of removing inflections from a word not necessarily “identical to the morphological root of the word” (wikipedia). Below I show stemming of several small strings.
y <- c(
'the dirtier dog has eaten the pies',
'that shameful pooch is tricky and sneaky',
"He opened and then reopened the food bag",
'There are skies of blue and red roses too!',
NA,
"The doggies, well they aren't joyfully running.",
"The daddies are coming over...",
"This is 34.546 above"
)
stem_strings(y)
## [1] "the dirtier dog ha eaten the pi"
## [2] "that shame pooch i tricki and sneaki"
## [3] "He open and then reopen the food bag"
## [4] "There ar ski of blue and red rose too!"
## [5] NA
## [6] "The doggi, well thei aren't joyfulli run."
## [7] "The daddi ar come over..."
## [8] "Thi i 34.546 abov"
Lemmatizing is the “grouping together
the inflected forms of a word so they can be analysed as a single item”
(wikipedia). In the example below I reduce the strings to their
lemma form. lemmatize_strings
uses a lookup dictionary. The
default uses Mechura’s (2016)
English lemmatization list available from the lexicon
package. The make_lemma_dictionary
function contains two
additional engines for generating a lemma lookup table for use in
lemmatize_strings
.
y <- c(
'the dirtier dog has eaten the pies',
'that shameful pooch is tricky and sneaky',
"He opened and then reopened the food bag",
'There are skies of blue and red roses too!',
NA,
"The doggies, well they aren't joyfully running.",
"The daddies are coming over...",
"This is 34.546 above"
)
lemmatize_strings(y)
## [1] "the dirty dog have eat the pie"
## [2] "that shameful pooch be tricky and sneaky"
## [3] "He open and then reopen the food bag"
## [4] "There be sky of blue and red rose too!"
## [5] NA
## [6] "The doggy, good they aren't joyfully run."
## [7] "The daddy be come over..."
## [8] "This be 34.546 above"
This lemmatization uses the hunspell package to generate lemmas.
lemma_dictionary_hs <- make_lemma_dictionary(y, engine = 'hunspell')
lemmatize_strings(y, dictionary = lemma_dictionary_hs)
## [1] "the dirty dog ha eat the pie"
## [2] "that shameful pooch i tricky and sneaky"
## [3] "He open and then reopen the food bag"
## [4] "There are sky of blue and re rose too!"
## [5] NA
## [6] "The doggy, well they aren't joyful running."
## [7] "The daddy are come over..."
## [8] "This i 34.546 above"
This lemmatization uses the koRpus package and the TreeTagger program to generate lemmas. You’ll have to get TreeTagger set up, preferably in your machine’s root directory.
lemma_dictionary_tt <- make_lemma_dictionary(y, engine = 'treetagger')
lemmatize_strings(y, lemma_dictionary_tt)
## [1] "the dirty dog have eat the pie"
## [2] "that shameful pooch be tricky and sneaky"
## [3] "He open and then reopen the food bag"
## [4] "There be sky of blue and red rose too!"
## [5] NA
## [6] "The doggy, well they aren't joyfully run."
## [7] "The daddy be come over..."
## [8] "This be 34.546 above"
It’s pretty fast too. Observe:
tic <- Sys.time()
presidential_debates_2012$dialogue %>%
lemmatize_strings() %>%
head()
## [1] "We'll talk about specifically about health care in a moment."
## [2] "But what do you support the voucher system, Governor?"
## [3] "What I support be no change for current retiree and near retiree to Medicare."
## [4] "And the president support take dollar seven hundred sixteen billion out of that program."
## [5] "And what about the voucher?"
## [6] "So that's that's numb one."
(toc <- Sys.time() - tic)
## Time difference of 0.8516021 secs
That’s 2,912 rows of text, or 42,708 words, in 0.85 seconds.
This example shows how stemming/lemmatizing might be complemented by
other text tools such as replace_contraction
from the
textclean package.
library(textclean)
'aren\'t' %>%
lemmatize_strings()
## [1] "aren't"
'aren\'t' %>%
textclean::replace_contraction() %>%
lemmatize_strings()
## [1] "be not"
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.