The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
In this example analysis, I will demonstrate how to run an analysis of heterogeneous treatment effects in an observational setting using the methods of Kennedy (2020).
This analysis will focus on using machine learning ensembles (through SuperLearner) to estimate nuisance functions and then provide a tibble of estimates of conditional treatment effects along with their associated standard errors.
If real data is used, simply replace this block with an appropriate
readr::read_csv
call or equivalent, creating a tibble. I
will assume this tibble is stored as data
for the remainder
of this document.
Note that datatypes can be either continuous or discrete, and that there can be columns in the tibble that are not included in any resulting anayses.
set.seed(100)
n <- 500
data <- tibble(
uid = 1:n
) %>%
mutate(
x1 = rnorm(n),
x2 = factor(sample(1:4, n, prob = c(1 / 100, 39 / 100, 1 / 5, 2 / 5), replace = TRUE)),
x3 = factor(sample(1:3, n, prob = c(1 / 5, 1 / 5, 3 / 5), replace = TRUE)),
x4 = (x1 + rnorm(n)) / 2,
x5 = rnorm(n),
ps = plogis(x1 * 0.3 - as.double(x2) * 0.25 + x5 * 0.5),
a = rbinom(n, 1, ps),
y = (
a + x1 - a * (x1 - mean(x1)) + (4 * rbinom(n, 1, 0.5) - 1) * a * (x2 == 2) +
a * (x2 == 3) + 0.5 * a * (x2 == 4) +
0.25 * rnorm(n)
),
w = 0.1 + rexp(n, 1 / 0.9)
)
We estimate the propensity score and outcome (T-learner) plugin estimates using an ensemble of machine learning models, including a wide array of model complexities from linear models, GAMs, regularized regressions. In this example, non-linear models are not included (due to runtime), but they could easily be added by uncommenting the associated lines.
Each individual component of the model provides a list of
hyperparameters, over which a full cross-product is taken and all
resulting models are estimate. For instance, SL.glmnet
sweeps over one hyperparameter (the mixing parameters between ridge and
Lasso). A model with each of the hyper-parameter values will be
estimated and incorporated into the ensemble. Note that
SL.glmnet
automatically tunes the regularization parameter
using cv.glmnet
, so this is not included as a
hyperparameter.
Quantities of Interest determine how results are reported to the user. You can think about this as determining, for instance how results should be plotted in a resulting chart.
For simplicity, this example simply provides results in one of two
ways: - Discrete covariates are stratified and the conditional effect is
plotted at each distinct level of the covariate. - Continuous covariates
have the effect surface estimated using local-linear regression via
nprobust
of Calonico, Cattaneo and Farrell (2018). See,
similarly, Kennedy, Ma, McHugh and Small (2017) for justification of
this approach. Results are obtained for a grid of 100 quantiles across
the domain of the covariate.
An additional quantity of interest provided is the variable importance of a learned joint model of conditional effects (over all covariates). The approach implemented is described in Williamson, Gilbert, Carone and Simon (2020).
hte_cfg <- basic_config() %>%
add_propensity_score_model("SL.glm.interaction") %>%
add_propensity_score_model("SL.glmnet", alpha = c(0,1)) %>%
add_propensity_score_model(
"SL.glmnet.interaction", alpha = c(0, 1)
) %>%
add_outcome_model("SL.glm.interaction") %>%
add_outcome_model("SL.glmnet", alpha = c(0, 1)) %>%
add_outcome_model("SL.glmnet.interaction", alpha = c(0, 1)) %>%
add_outcome_diagnostic("RROC") %>%
add_effect_model("SL.glm.interaction") %>%
add_effect_model("SL.glmnet", alpha = c(0, 1)) %>%
add_effect_model("SL.glmnet.interaction", alpha = c(0, 1)) %>%
add_effect_diagnostic("RROC") %>%
add_moderator("Stratified", x2, x3) %>%
add_moderator("KernelSmooth", x1, x4, x5) %>%
add_vimp(sample_splitting = FALSE) ->
hte_cfg
To actually perform the estimation, the following will be sufficient. Note that the configuration of covariate names at the top of the document makes all of this a little more complex with all the curly-brackets and bangs.
data %>%
attach_config(hte_cfg) %>%
make_splits(uid, .num_splits = 3) %>%
produce_plugin_estimates(
y,
a,
x1, x2, x3, x4, x5,
) -> prepped_data
construct_pseudo_outcomes(prepped_data, y, a) %>%
estimate_QoI(x1, x2, x3, x4, x5) -> results
## # A tibble: 853 × 6
## estimand term value level estimate std_error
## <chr> <chr> <dbl> <chr> <dbl> <dbl>
## 1 MCATE x1 -1.79 <NA> 4.07 0.556
## 2 MCATE x1 -1.72 <NA> 3.95 0.507
## 3 MCATE x1 -1.63 <NA> 3.78 0.438
## 4 MCATE x1 -1.53 <NA> 3.62 0.382
## 5 MCATE x1 -1.43 <NA> 3.44 0.324
## 6 MCATE x1 -1.34 <NA> 3.29 0.280
## 7 MCATE x1 -1.25 <NA> 3.15 0.245
## 8 MCATE x1 -1.20 <NA> 3.07 0.227
## 9 MCATE x1 -1.17 <NA> 3.02 0.218
## 10 MCATE x1 -1.13 <NA> 2.96 0.206
## # ℹ 843 more rows
## # A tibble: 1 × 6
## estimand term value level estimate std_error
## <chr> <chr> <dbl> <chr> <dbl> <dbl>
## 1 SATE <NA> NA <NA> 1.79 0.121
filter(results, grepl("SL coefficient", estimand)) %>%
mutate(level = factor(level, levels = c("Control Response", "Treatment Response"))) %>%
ggplot(aes(
x = reorder(term, estimate),
y = estimate,
ymin = estimate - 1.96 * std_error,
ymax = estimate + 1.96 * std_error
)) +
geom_abline(intercept = 0, slope = 0, linetype = "dashed") +
geom_pointrange() +
expand_limits(y = 0) +
scale_x_discrete("Model name") +
scale_y_continuous("Coefficient in SuperLearner Ensemble") +
facet_wrap(~level) +
coord_flip() +
ggtitle("SuperLearner Ensemble") +
theme_minimal()
filter(results, grepl("SL risk", estimand)) %>%
mutate(
level = factor(level, levels = c("Control Response", "Treatment Response", "Effect Surface"))
) %>%
ggplot() +
geom_abline(intercept = 0, slope = 0, linetype = "dashed") +
geom_pointrange(
aes(
x = reorder(term, -estimate),
y = estimate,
ymin = estimate - 1.96 * std_error,
ymax = estimate + 1.96 * std_error)
) +
expand_limits(y = 0) +
scale_x_discrete("Model name") +
scale_y_continuous("CV Risk in SuperLearner Ensemble") +
facet_wrap(~level, scales = "free_x") +
coord_flip() +
ggtitle("Submodel Risk Estimates") +
theme_minimal()
filter(results, grepl("RROC", estimand)) %>%
mutate(
level = factor(level, levels = c("Control Response", "Treatment Response", "Effect Surface"))
) %>%
ggplot() +
geom_line(
aes(
x = value,
y = estimate
)
) +
geom_point(
aes(x = value, y = estimate),
data = filter(results, grepl("RROC", estimand)) %>% group_by(level) %>% slice_head(n = 1)
) +
expand_limits(y = 0) +
scale_x_continuous("Over-estimation") +
scale_y_continuous("Under-estimation") +
facet_wrap(~level, scales = "free_x") +
coord_flip() +
ggtitle("Regression ROC Curves") +
theme_minimal()
ggplot(filter(results, estimand == "VIMP")) +
geom_abline(intercept = 0, slope = 0, linetype = "dashed") +
geom_pointrange(
aes(
x = term,
y = estimate,
ymin = estimate - 1.96 * std_error,
ymax = estimate + 1.96 * std_error
)
) +
expand_limits(y = 0) +
scale_x_discrete("Covariate") +
scale_y_continuous("Reduction in R² from full model") +
coord_flip() +
ggtitle("Covariate Importance") +
theme_minimal()
for (cov in c("x1", "x4", "x5")) {
ggplot(filter(results, estimand == "MCATE", term == cov)) +
geom_abline(intercept = 0, slope = 0, linetype = "dashed") +
geom_ribbon(
aes(
x = value,
ymin = estimate - 1.96 * std_error,
ymax = estimate + 1.96 * std_error
),
alpha = 0.75
) +
geom_line(
aes(x = value, y = estimate)
) +
expand_limits(y = 0) +
scale_x_continuous("Covariate level") +
scale_y_continuous("CATE") +
ggtitle(paste("Marginal effects across", cov)) +
theme_minimal() -> gp
print(gp)
}
for (cov in c("x2", "x3")) {
ggplot(filter(results, estimand == "MCATE", term == cov)) +
geom_abline(intercept = 0, slope = 0, linetype = "dashed") +
geom_pointrange(
aes(
x = level,
y = estimate,
ymin = estimate - 1.96 * std_error,
ymax = estimate + 1.96 * std_error
)
) +
expand_limits(y = 0) +
scale_x_discrete("Covariate level") +
scale_y_continuous("CATE") +
ggtitle(paste("Marginal effects across", cov)) +
theme_minimal() -> gp
print(gp)
}
## R version 4.3.1 (2023-06-16)
## Platform: aarch64-apple-darwin22.4.0 (64-bit)
## Running under: macOS Ventura 13.4.1
##
## Matrix products: default
## BLAS: /opt/homebrew/Cellar/openblas/0.3.23/lib/libopenblasp-r0.3.23.dylib
## LAPACK: /opt/homebrew/Cellar/r/4.3.1/lib/R/lib/libRlapack.dylib; LAPACK version 3.11.0
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: Europe/Vienna
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] magrittr_2.0.3 palmerpenguins_0.1.1 nnls_1.4
## [4] SuperLearner_2.0-28.1 dplyr_1.1.2 ggplot2_3.4.2
## [7] tidyhte_1.0.2
##
## loaded via a namespace (and not attached):
## [1] vimp_2.3.1 sass_0.4.6 utf8_1.2.3
## [4] generics_0.1.3 quickblock_0.2.0 shape_1.4.6
## [7] lattice_0.21-8 distances_0.1.9 hms_1.1.3
## [10] digest_0.6.33 evaluate_0.21 grid_4.3.1
## [13] iterators_1.0.14 fastmap_1.1.1 Matrix_1.5-4.1
## [16] glmnet_4.1-7 foreach_1.5.2 jsonlite_1.8.7
## [19] progress_1.2.2 backports_1.4.1 survival_3.5-5
## [22] purrr_1.0.1 fansi_1.0.4 scales_1.2.1
## [25] codetools_0.2-19 jquerylib_0.1.4 cli_3.6.1
## [28] rlang_1.1.1 crayon_1.5.2 scclust_0.2.3
## [31] munsell_0.5.0 splines_4.3.1 withr_2.5.0
## [34] cachem_1.0.8 yaml_2.3.7 tools_4.3.1
## [37] checkmate_2.2.0 colorspace_2.1-0 boot_1.3-28.1
## [40] nprobust_0.4.0 vctrs_0.6.3 R6_2.5.1
## [43] lifecycle_1.0.3 MASS_7.3-60 pkgconfig_2.0.3
## [46] pillar_1.9.0 bslib_0.5.0 gtable_0.3.3
## [49] glue_1.6.2 data.table_1.14.8 Rcpp_1.0.11
## [52] highr_0.10 xfun_0.39 tibble_3.2.1
## [55] tidyselect_1.2.0 knitr_1.43 farver_2.1.1
## [58] htmltools_0.5.5 labeling_0.4.2 rmarkdown_2.23
## [61] gam_1.22-2 compiler_4.3.1 quadprog_1.5-8
## [64] prettyunits_1.1.1 WeightedROC_2020.1.31
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.