The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

tidyhydat
do?available_*) that combine validated
historical data with provisional real-time data.hy_*) that access hydrometric data
from the HYDAT database or web service, a national archive of Canadian
hydrometric data and return tidy data.realtime_*) that access Environment
and Climate Change Canada’s real-time hydrometric data source.search_*) that can search through
the approximately 7000 stations in the database and aid in generating
station vectorshy_daily_flows() function queries the database,
tidies the data and returns a tibble of daily flows.You can install tidyhydat from CRAN:
install.packages("tidyhydat")
To install the development version of the tidyhydat
package, you can install directly from the rOpenSci development
server:
install.packages("tidyhydat", repos = "https://dev.ropensci.org")
More documentation on tidyhydat can found at the
rOpenSci doc page: https://docs.ropensci.org/tidyhydat/
When you install tidyhydat, several other packages will
be installed as well. One of those packages, dplyr, is
useful for data manipulations and is used regularly here. To use
actually use dplyr in a session you must explicitly load
it. A helpful dplyr tutorial can be found here.
library(tidyhydat)
library(dplyr)
To use many of the functions in the tidyhydat package
you will need to download a version of the HYDAT database, Environment
and Climate Change Canada’s database of historical hydrometric data then
tell R where to find the database. Conveniently tidyhydat
does all this for you via:
download_hydat()
This downloads (with your permission) the most recent version of
HYDAT and then saves it in a location on your computer where
tidyhydat’s function will look for it. Do be patient though
as this can take a long time! To see where HYDAT was saved you can run
hy_default_db(). Now that you have HYDAT downloaded and
ready to go, you are all set to begin looking at Canadian hydrometric
data.
For a complete record combining validated historical data with recent
provisional data use the available_flows and
available_levels functions.
available_flows(
station_number = "08MF005",
start_date = "2020-01-01",
end_date = Sys.Date()
)
#> Queried on: 2026-01-26 23:00:31.03418 (UTC)
#> Historical data source: HYDAT
#> Overall date range: 2020-01-01 to 2026-01-26
#> Flow records by approval status:
#> final: 1,827
#> provisional: 391
#> Station(s) returned: 1
#> All stations successfully retrieved.
#> Use summary() for per-station date ranges.
#> # A tibble: 2,218 × 6
#> STATION_NUMBER Date Parameter Value Symbol Approval
#> <chr> <date> <chr> <dbl> <chr> <chr>
#> 1 08MF005 2020-01-01 Flow 1340 <NA> final
#> 2 08MF005 2020-01-02 Flow 1330 <NA> final
#> 3 08MF005 2020-01-03 Flow 1310 <NA> final
#> 4 08MF005 2020-01-04 Flow 1420 <NA> final
#> 5 08MF005 2020-01-05 Flow 1350 <NA> final
#> 6 08MF005 2020-01-06 Flow 1310 <NA> final
#> 7 08MF005 2020-01-07 Flow 1280 <NA> final
#> 8 08MF005 2020-01-08 Flow 1320 <NA> final
#> 9 08MF005 2020-01-09 Flow 1230 <NA> final
#> 10 08MF005 2020-01-10 Flow 1210 <NA> final
#> # ℹ 2,208 more rows
Use summary() to see date ranges and record counts by
station:
flows <- available_flows(
station_number = c("08MF005", "08NM116"),
start_date = "2020-01-01"
)
summary(flows)
#> # A tibble: 2 × 7
#> STATION_NUMBER final_start final_end final_n provisional_start
#> <chr> <date> <date> <int> <date>
#> 1 08MF005 2020-01-01 2024-12-31 1827 2025-01-01
#> 2 08NM116 2020-01-01 2023-12-31 1461 2025-01-01
#> # ℹ 2 more variables: provisional_end <date>, provisional_n <int>
Note that provisional data is aggregated to daily means to match the
daily format of HYDAT data. For non-aggregated real-time data at
sub-daily intervals, use realtime_ws() directly.
To download real-time data using the datamart we can use
approximately the same conventions discussed above. Using
realtime_dd() we can easily select specific stations by
supplying a station of interest:
realtime_dd(station_number = "08MF005")
#> Queried on: 2026-01-26 23:00:37.058285 (UTC)
#> Date range: 2025-12-27 to 2026-01-26
#> # A tibble: 17,622 × 8
#> STATION_NUMBER PROV_TERR_STATE_LOC Date Parameter Value Grade
#> <chr> <chr> <dttm> <chr> <dbl> <chr>
#> 1 08MF005 BC 2025-12-27 08:00:00 Flow 1030 <NA>
#> 2 08MF005 BC 2025-12-27 08:05:00 Flow 1030 <NA>
#> 3 08MF005 BC 2025-12-27 08:10:00 Flow 1030 <NA>
#> 4 08MF005 BC 2025-12-27 08:15:00 Flow 1030 <NA>
#> 5 08MF005 BC 2025-12-27 08:20:00 Flow 1030 <NA>
#> 6 08MF005 BC 2025-12-27 08:25:00 Flow 1030 <NA>
#> 7 08MF005 BC 2025-12-27 08:30:00 Flow 1030 <NA>
#> 8 08MF005 BC 2025-12-27 08:35:00 Flow 1030 <NA>
#> 9 08MF005 BC 2025-12-27 08:40:00 Flow 1030 <NA>
#> 10 08MF005 BC 2025-12-27 08:45:00 Flow 1030 <NA>
#> # ℹ 17,612 more rows
#> # ℹ 2 more variables: Symbol <chr>, Code <chr>
Or we can use realtime_ws:
realtime_ws(
station_number = "08MF005",
parameters = c(46, 5), ## see param_id for a list of codes
start_date = Sys.Date() - 14,
end_date = Sys.Date()
)
#> Queried on: 2026-01-26 23:00:38.302716 (UTC)
#> Date range: 2026-01-12 to 2026-01-26
#> Station(s) returned: 1
#> All stations successfully retrieved.
#> All parameters successfully retrieved.
#> # A tibble: 4,658 × 12
#> STATION_NUMBER Date Name_En Value Unit Grade Symbol Approval
#> <chr> <dttm> <chr> <dbl> <chr> <lgl> <chr> <chr>
#> 1 08MF005 2026-01-12 00:00:00 Water t… 5.1 °C NA <NA> Provisi…
#> 2 08MF005 2026-01-12 01:00:00 Water t… 5.11 °C NA <NA> Provisi…
#> 3 08MF005 2026-01-12 02:00:00 Water t… 5.09 °C NA <NA> Provisi…
#> 4 08MF005 2026-01-12 03:00:00 Water t… 5.09 °C NA <NA> Provisi…
#> 5 08MF005 2026-01-12 04:00:00 Water t… 5.1 °C NA <NA> Provisi…
#> 6 08MF005 2026-01-12 05:00:00 Water t… 5.1 °C NA <NA> Provisi…
#> 7 08MF005 2026-01-12 06:00:00 Water t… 5.1 °C NA <NA> Provisi…
#> 8 08MF005 2026-01-12 07:00:00 Water t… 5.1 °C NA <NA> Provisi…
#> 9 08MF005 2026-01-12 08:00:00 Water t… 5.1 °C NA <NA> Provisi…
#> 10 08MF005 2026-01-12 09:00:00 Water t… 5.11 °C NA <NA> Provisi…
#> # ℹ 4,648 more rows
#> # ℹ 4 more variables: Parameter <dbl>, Code <chr>, Qualifier <chr>,
#> # Qualifiers <lgl>
If you wish to use only the final approved data in HYDAT database you can use:
hy_daily_flows(
station_number = "08MF005",
start_date = "2020-01-01",
end_date = "2020-12-31"
)
#> Queried from version of HYDAT released on 2025-10-14
#> Observations: 366
#> Measurement flags: 0
#> Parameter(s): Flow
#> Date range: 2020-01-01 to 2020-12-31
#> Station(s) returned: 1
#> Stations requested but not returned:
#> All stations returned.
#> # A tibble: 366 × 5
#> STATION_NUMBER Date Parameter Value Symbol
#> <chr> <date> <chr> <dbl> <chr>
#> 1 08MF005 2020-01-01 Flow 1340 <NA>
#> 2 08MF005 2020-01-02 Flow 1330 <NA>
#> 3 08MF005 2020-01-03 Flow 1310 <NA>
#> 4 08MF005 2020-01-04 Flow 1420 <NA>
#> 5 08MF005 2020-01-05 Flow 1350 <NA>
#> 6 08MF005 2020-01-06 Flow 1310 <NA>
#> 7 08MF005 2020-01-07 Flow 1280 <NA>
#> 8 08MF005 2020-01-08 Flow 1320 <NA>
#> 9 08MF005 2020-01-09 Flow 1230 <NA>
#> 10 08MF005 2020-01-10 Flow 1210 <NA>
#> # ℹ 356 more rows
For smaller queries where downloading the entire HYDAT database is
unnecessary, you can use hy_daily_flows() and
hy_daily_levels() with hydat_path = FALSE to
access historical daily data directly from the web service:
hy_daily_flows(
station_number = "08MF005",
hydat_path = FALSE,
start_date = "2020-01-01",
end_date = "2020-12-31"
)
#> Queried on: 2026-01-26 23:00:39.500049 (UTC)
#> Date range: 2020-01-01 to 2020-12-31
#> Station(s) returned: 1
#> All stations successfully retrieved.
#> # A tibble: 366 × 5
#> STATION_NUMBER Date Parameter Value Symbol
#> <chr> <date> <chr> <dbl> <chr>
#> 1 08MF005 2020-01-01 discharge/débit 1340 <NA>
#> 2 08MF005 2020-01-02 discharge/débit 1330 <NA>
#> 3 08MF005 2020-01-03 discharge/débit 1310 <NA>
#> 4 08MF005 2020-01-04 discharge/débit 1420 <NA>
#> 5 08MF005 2020-01-05 discharge/débit 1350 <NA>
#> 6 08MF005 2020-01-06 discharge/débit 1310 <NA>
#> 7 08MF005 2020-01-07 discharge/débit 1280 <NA>
#> 8 08MF005 2020-01-08 discharge/débit 1320 <NA>
#> 9 08MF005 2020-01-09 discharge/débit 1230 <NA>
#> 10 08MF005 2020-01-10 discharge/débit 1210 <NA>
#> # ℹ 356 more rows
tidyhydat provides two methods to download realtime
data. realtime_dd() provides a function to import .csv
files from here.
realtime_ws() is an client for a web service hosted by
ECCC. realtime_ws() has several difference to
realtime_dd(). These include:
realtime_ws() is much faster for
larger queries (i.e. many stations). For single station queries to
realtime_dd() is more appropriate.realtime_ws() records goes
back further in time.realtime_dd() are
restricted to river flow (either flow and level) data. In contrast
realtime_ws() can download several different parameters
depending on what is available for that station. See
data("param_id") for a list and explanation of the
parameters.realtime_ws() provides
argument to select a date range. Selecting a data range with
realtime_dd() is not possible until after all files have
been downloaded.Plot methods are also provided to quickly visualize data:
flows_ex <- available_flows(station_number = "08MF005", start_date = "2013-01-01")
plot(flows_ex)

To report bugs/issues/feature requests, please file an issue.
These are very welcome!
If you would like to contribute to the package, please see our CONTRIBUTING guidelines.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
Get citation information for tidyhydat in R by
running:
To cite package 'tidyhydat' in publications use:
Albers S (2017). "tidyhydat: Extract and Tidy Canadian Hydrometric
Data." _The Journal of Open Source Software_, *2*(20).
doi:10.21105/joss.00511 <https://doi.org/10.21105/joss.00511>,
<http://dx.doi.org/10.21105/joss.00511>.
A BibTeX entry for LaTeX users is
@Article{,
title = {tidyhydat: Extract and Tidy Canadian Hydrometric Data},
author = {Sam Albers},
doi = {10.21105/joss.00511},
url = {http://dx.doi.org/10.21105/joss.00511},
year = {2017},
publisher = {The Open Journal},
volume = {2},
number = {20},
journal = {The Journal of Open Source Software},
}
Copyright 2017 Province of British Columbia
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.