The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

tidyindex

library(tidyindex)
library(dplyr)
library(lubridate)
library(lmomco)
library(ggplot2)
library(tsibble)

The tidyindex package provides functionality to construct indexes in a data pipeline, align with the tidyverse paradigm. The pipeline approach is universally applicable to indexes of all kinds. It allows indexes to be broken down into a set of defined building blocks (modules) and hence provides means to standardise the workflow to construct, compare, and analyse indexes.

Decomposing an index into steps

Here we present an example to calculate one of the most widely used drought index: Standardised Precipitation Index (SPI). The index is composed to three steps:

Pipeline design

These three steps correspond to three modules in the tidyindex pipeline (temporal_aggregate(), distribution_fit(), and normalise()). Each module uses a tidyverse-mutate style to calculate a step within the module. For example, the following code fits a gamma distribution to the variable .agg. Different distributions are available and prefixed with dist_*() and additional distribution can be added by the user following a similar style to the existing dist_*() steps. The step dist_*() can also be evaluated standalone and seen as a recipe of the step:

distribution_fit(.fit = dist_gamma(...))
dist_gamma(var = ".agg")
#> [1] "distfit_gamma"
#> attr(,"var")
#> <quosure>
#> expr: ^".agg"
#> env:  empty
#> attr(,"fn")
#> function (var_para, var_fit) 
#> {
#>     para <- do.call("pargam", list(do.call("lmoms", list(var_para))))
#>     var_fit2 <- var_fit[!is.na(var_fit)]
#>     fit <- do.call("cdfgam", list(x = var_fit2, para = para))
#>     n_padding <- length(var_fit) - length(fit)
#>     if (n_padding > 0) {
#>         fit <- c(rep(NA, n_padding), fit)
#>     }
#>     tibble(para = list(para), fit = list(fit))
#> }
#> <bytecode: 0x7fe6541bab48>
#> <environment: 0x7fe6541bcd08>
#> attr(,"n_boot")
#> [1] 1
#> attr(,"boot_seed")
#> [1] 123
#> attr(,"dist")
#> [1] "gamma"
#> attr(,"class")
#> [1] "dist_fit"

Standardised Precipitation Index (SPI): An example

Here we select a single station, Texas Post Office, where is heavily impacted during the 2019/20 bushfire season, in Queensland, Australia, to demonstrate the calculation.

texas_post_office <- queensland %>% 
  filter(name == "TEXAS POST OFFICE") %>% 
  mutate(month = lubridate::month(ym)) 

dt <- texas_post_office |>
  init(id = id, time = ym, group = month) |> 
  temporal_aggregate(.agg = temporal_rolling_window(prcp, scale = 24)) |> 
  distribution_fit(.fit = dist_gamma(var = ".agg")) |>
  tidyindex::normalise(.index = norm_quantile(.fit))
dt
#> Index pipeline: 
#> 
#> Steps:
#> temporal: `rolling_window()` -> .agg
#> distribution_fit: `distfit_gamma()` -> .fit
#> normalise: `norm_quantile()` -> .index
#> 
#> Data: 
#> # A tibble: 365 × 14
#>    id       month       ym  prcp  tmax  tmin  tavg  long   lat name   .agg  .fit
#>    <chr>    <dbl>    <mth> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#>  1 ASN0004…    12 1991 Dec  1340  31.7 16.1   23.9  151. -28.9 TEXA… 10807 0.216
#>  2 ASN0004…     1 1992 Jan  1732  34.4 18.5   26.5  151. -28.9 TEXA… 11699 0.313
#>  3 ASN0004…     2 1992 Feb  1850  31.2 19.2   25.2  151. -28.9 TEXA… 13091 0.533
#>  4 ASN0004…     3 1992 Mar   146  31.0 14.1   22.6  151. -28.9 TEXA… 13081 0.518
#>  5 ASN0004…     4 1992 Apr   324  27.2 12.6   19.9  151. -28.9 TEXA… 11876 0.333
#>  6 ASN0004…     5 1992 May   597  22.0  9.12  15.6  151. -28.9 TEXA… 11861 0.340
#>  7 ASN0004…     6 1992 Jun    76  18.6  2.49  10.5  151. -28.9 TEXA… 11775 0.320
#>  8 ASN0004…     7 1992 Jul   100  19.8  1.73  10.8  151. -28.9 TEXA… 11735 0.319
#>  9 ASN0004…     8 1992 Aug   578  20.8  4.01  12.4  151. -28.9 TEXA… 12213 0.397
#> 10 ASN0004…     9 1992 Sep   416  22.8  6.41  14.6  151. -28.9 TEXA… 12439 0.436
#> # ℹ 355 more rows
#> # ℹ 2 more variables: .fit_obj <list>, .index <dbl>

The results contain a summary of the steps used and the data with intermediate variables (.agg, .fit, and .fit_obj) and the index (.index). We can plot the result using ggplot2 as:

dt$data |> 
  ggplot(aes(x = ym, y = .index)) + 
  geom_hline(yintercept = -2, color = "red",  linewidth = 1) + 
  geom_line() + 
  scale_x_yearmonth(name = "Year", date_break = "2 years", date_label = "%Y") +
   theme_bw() +
  facet_wrap(vars(name), ncol = 1) + 
  theme(panel.grid = element_blank(), 
        legend.position = "bottom") + 
  ylab("SPI")

What’s more

There are many different things you can do with the package, for example:

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.