The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

tidysq

CRAN_Status_Badge Github Actions Build Status Lifecycle: experimental

Overview

tidysq contains tools for analysis and manipulation of biological sequences (including amino acid and nucleic acid – e.g. RNA, DNA – sequences). Two major features of this package are:

Getting started

Try our quick start vignette or our exhaustive documentation.

Installation

The easiest way to install tidysq package is to download its latest version from CRAN repository:

install.packages("tidysq")

Alternatively, it is possible to download the development version directly from GitHub repository:

# install.packages("devtools")
devtools::install_github("BioGenies/tidysq")

Example usage

library(tidysq)
file <- system.file("examples", "example_aa.fasta", package = "tidysq")
sqibble <- read_fasta(file)
sqibble
#> # A tibble: 421 × 2
#>    sq             name                               
#>    <ami_bsc>      <chr>                              
#>  1 PGGGKVQIV <13> AMY1|K19|T-Protein (Tau)           
#>  2 NLKHQPGGG <43> AMY9|K19Gluc41|T-Protein (Tau)     
#>  3 NLKHQPGGG <19> AMY14|K19Gluc782|T-Protein (Tau)   
#>  4 GKVQIVYK   <8> AMY17|PHF8|T-Protein (Tau)         
#>  5 VQIVYK     <6> AMY18|PHF6|T-Protein (Tau)         
#>  6 DAEFRHDSG <40> AMY22|Whole|Amyloid beta A4 peptide
#>  7 VPHQKLVFF <15> AMY23|HABP1|Amyloid beta A4 peptide
#>  8 VHPQKLVFF <15> AMY24|HABP2|Amyloid beta A4 peptide
#>  9 VHHPKLVFF <15> AMY25|HABP3|Amyloid beta A4 peptide
#> 10 VHHQPLVFF <15> AMY26|HABP4|Amyloid beta A4 peptide
#> # ℹ 411 more rows

sq_ami <- sqibble$sq
sq_ami
#> basic amino acid sequences list:
#>  [1] PGGGKVQIVYKPV                                                          <13>
#>  [2] NLKHQPGGGKVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVE                            <43>
#>  [3] NLKHQPGGGKVQIVYKEVD                                                    <19>
#>  [4] GKVQIVYK                                                                <8>
#>  [5] VQIVYK                                                                  <6>
#>  [6] DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV                               <40>
#>  [7] VPHQKLVFFAEDVGS                                                        <15>
#>  [8] VHPQKLVFFAEDVGS                                                        <15>
#>  [9] VHHPKLVFFAEDVGS                                                        <15>
#> [10] VHHQPLVFFAEDVGS                                                        <15>
#> printed 10 out of 421

# Subsequences can be extracted with bite()
bite(sq_ami, 5:10)
#> Warning in CPP_bite(x, indices, NA_letter, on_warning): some sequences are
#> subsetted with index bigger than length - NA introduced
#> basic amino acid sequences list:
#>  [1] KVQIVY                                                                  <6>
#>  [2] QPGGGK                                                                  <6>
#>  [3] QPGGGK                                                                  <6>
#>  [4] IVYK!!                                                                  <6>
#>  [5] YK!!!!                                                                  <6>
#>  [6] RHDSGY                                                                  <6>
#>  [7] KLVFFA                                                                  <6>
#>  [8] KLVFFA                                                                  <6>
#>  [9] KLVFFA                                                                  <6>
#> [10] PLVFFA                                                                  <6>
#> printed 10 out of 421

# There are also more traditional functions
reverse(sq_ami)
#> basic amino acid sequences list:
#>  [1] VPKYVIQVKGGGP                                                          <13>
#>  [2] EVQGGGPKHHINGLSGCKSTVKSLDVPKYVIQVKGGGPQHKLN                            <43>
#>  [3] DVEKYVIQVKGGGPQHKLN                                                    <19>
#>  [4] KYVIQVKG                                                                <8>
#>  [5] KYVIQV                                                                  <6>
#>  [6] VVGGVMLGIIAGKNSGVDEAFFVLKQHHVEYGSDHRFEAD                               <40>
#>  [7] SGVDEAFFVLKQHPV                                                        <15>
#>  [8] SGVDEAFFVLKQPHV                                                        <15>
#>  [9] SGVDEAFFVLKPHHV                                                        <15>
#> [10] SGVDEAFFVLPQHHV                                                        <15>
#> printed 10 out of 421

# find_motifs() returns a whole tibble of useful informations
find_motifs(sqibble, "^VHX")
#> # A tibble: 9 × 5
#>   names                                found     sought start   end
#>   <chr>                                <ami_bsc> <chr>  <int> <int>
#> 1 AMY24|HABP2|Amyloid beta A4 peptide  VHP <3>   ^VHX       1     3
#> 2 AMY25|HABP3|Amyloid beta A4 peptide  VHH <3>   ^VHX       1     3
#> 3 AMY26|HABP4|Amyloid beta A4 peptide  VHH <3>   ^VHX       1     3
#> 4 AMY34|HABP12|Amyloid beta A4 peptide VHH <3>   ^VHX       1     3
#> 5 AMY35|HABP13|Amyloid beta A4 peptide VHH <3>   ^VHX       1     3
#> 6 AMY36|HABP14|Amyloid beta A4 peptide VHH <3>   ^VHX       1     3
#> 7 AMY38|HABP16|Amyloid beta A4 peptide VHH <3>   ^VHX       1     3
#> 8 AMY43|AB5|Amyloid beta A4 peptide    VHH <3>   ^VHX       1     3
#> 9 AMY195|86-95|Prion protein (human)   VHD <3>   ^VHX       1     3

An example of dplyr integration:

library(dplyr)
# tidysq integrates well with dplyr verbs
sqibble %>%
  filter(sq %has% "VFF") %>%
  mutate(length = get_sq_lengths(sq))
#> # A tibble: 24 × 3
#>    sq             name                                 length
#>    <ami_bsc>      <chr>                                 <dbl>
#>  1 DAEFRHDSG <40> AMY22|Whole|Amyloid beta A4 peptide      40
#>  2 VPHQKLVFF <15> AMY23|HABP1|Amyloid beta A4 peptide      15
#>  3 VHPQKLVFF <15> AMY24|HABP2|Amyloid beta A4 peptide      15
#>  4 VHHPKLVFF <15> AMY25|HABP3|Amyloid beta A4 peptide      15
#>  5 VHHQPLVFF <15> AMY26|HABP4|Amyloid beta A4 peptide      15
#>  6 KKLVFFPED  <9> AMY32|HABP10|Amyloid beta A4 peptide      9
#>  7 VHHQEKLVF <16> AMY34|HABP12|Amyloid beta A4 peptide     16
#>  8 VHHQEKLVF <16> AMY35|HABP13|Amyloid beta A4 peptide     16
#>  9 VHHQEKLVF <16> AMY36|HABP14|Amyloid beta A4 peptide     16
#> 10 KKLVFFAED  <9> AMY37|HABP15|Amyloid beta A4 peptide      9
#> # ℹ 14 more rows

Citation

For citation type:

citation("tidysq")

or use:

Michal Burdukiewicz, Dominik Rafacz, Laura Bakala, Jadwiga Slowik, Weronika Puchala, Filip Pietluch, Katarzyna Sidorczuk, Stefan Roediger and Leon Eyrich Jessen (2021). tidysq: Tidy Processing and Analysis of Biological Sequences. R package version 1.1.3.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.