The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
tidysq
contains tools for analysis and manipulation of
biological sequences (including amino acid and nucleic acid – e.g. RNA,
DNA – sequences). Two major features of this package are:
effective compression of sequence data, allowing to fit larger datasets in R,
compatibility with most of tidyverse
universe,
especially dplyr
and vctrs
packages, making
analyses tidier.
Try our quick start vignette or our exhaustive documentation.
The easiest way to install tidysq
package is to download
its latest version from CRAN repository:
install.packages("tidysq")
Alternatively, it is possible to download the development version directly from GitHub repository:
# install.packages("devtools")
::install_github("BioGenies/tidysq") devtools
library(tidysq)
<- system.file("examples", "example_aa.fasta", package = "tidysq")
file <- read_fasta(file)
sqibble
sqibble#> # A tibble: 421 × 2
#> sq name
#> <ami_bsc> <chr>
#> 1 PGGGKVQIV <13> AMY1|K19|T-Protein (Tau)
#> 2 NLKHQPGGG <43> AMY9|K19Gluc41|T-Protein (Tau)
#> 3 NLKHQPGGG <19> AMY14|K19Gluc782|T-Protein (Tau)
#> 4 GKVQIVYK <8> AMY17|PHF8|T-Protein (Tau)
#> 5 VQIVYK <6> AMY18|PHF6|T-Protein (Tau)
#> 6 DAEFRHDSG <40> AMY22|Whole|Amyloid beta A4 peptide
#> 7 VPHQKLVFF <15> AMY23|HABP1|Amyloid beta A4 peptide
#> 8 VHPQKLVFF <15> AMY24|HABP2|Amyloid beta A4 peptide
#> 9 VHHPKLVFF <15> AMY25|HABP3|Amyloid beta A4 peptide
#> 10 VHHQPLVFF <15> AMY26|HABP4|Amyloid beta A4 peptide
#> # ℹ 411 more rows
<- sqibble$sq
sq_ami
sq_ami#> basic amino acid sequences list:
#> [1] PGGGKVQIVYKPV <13>
#> [2] NLKHQPGGGKVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVE <43>
#> [3] NLKHQPGGGKVQIVYKEVD <19>
#> [4] GKVQIVYK <8>
#> [5] VQIVYK <6>
#> [6] DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV <40>
#> [7] VPHQKLVFFAEDVGS <15>
#> [8] VHPQKLVFFAEDVGS <15>
#> [9] VHHPKLVFFAEDVGS <15>
#> [10] VHHQPLVFFAEDVGS <15>
#> printed 10 out of 421
# Subsequences can be extracted with bite()
bite(sq_ami, 5:10)
#> Warning in CPP_bite(x, indices, NA_letter, on_warning): some sequences are
#> subsetted with index bigger than length - NA introduced
#> basic amino acid sequences list:
#> [1] KVQIVY <6>
#> [2] QPGGGK <6>
#> [3] QPGGGK <6>
#> [4] IVYK!! <6>
#> [5] YK!!!! <6>
#> [6] RHDSGY <6>
#> [7] KLVFFA <6>
#> [8] KLVFFA <6>
#> [9] KLVFFA <6>
#> [10] PLVFFA <6>
#> printed 10 out of 421
# There are also more traditional functions
reverse(sq_ami)
#> basic amino acid sequences list:
#> [1] VPKYVIQVKGGGP <13>
#> [2] EVQGGGPKHHINGLSGCKSTVKSLDVPKYVIQVKGGGPQHKLN <43>
#> [3] DVEKYVIQVKGGGPQHKLN <19>
#> [4] KYVIQVKG <8>
#> [5] KYVIQV <6>
#> [6] VVGGVMLGIIAGKNSGVDEAFFVLKQHHVEYGSDHRFEAD <40>
#> [7] SGVDEAFFVLKQHPV <15>
#> [8] SGVDEAFFVLKQPHV <15>
#> [9] SGVDEAFFVLKPHHV <15>
#> [10] SGVDEAFFVLPQHHV <15>
#> printed 10 out of 421
# find_motifs() returns a whole tibble of useful informations
find_motifs(sqibble, "^VHX")
#> # A tibble: 9 × 5
#> names found sought start end
#> <chr> <ami_bsc> <chr> <int> <int>
#> 1 AMY24|HABP2|Amyloid beta A4 peptide VHP <3> ^VHX 1 3
#> 2 AMY25|HABP3|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 3 AMY26|HABP4|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 4 AMY34|HABP12|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 5 AMY35|HABP13|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 6 AMY36|HABP14|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 7 AMY38|HABP16|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 8 AMY43|AB5|Amyloid beta A4 peptide VHH <3> ^VHX 1 3
#> 9 AMY195|86-95|Prion protein (human) VHD <3> ^VHX 1 3
An example of dplyr
integration:
library(dplyr)
# tidysq integrates well with dplyr verbs
%>%
sqibble filter(sq %has% "VFF") %>%
mutate(length = get_sq_lengths(sq))
#> # A tibble: 24 × 3
#> sq name length
#> <ami_bsc> <chr> <dbl>
#> 1 DAEFRHDSG <40> AMY22|Whole|Amyloid beta A4 peptide 40
#> 2 VPHQKLVFF <15> AMY23|HABP1|Amyloid beta A4 peptide 15
#> 3 VHPQKLVFF <15> AMY24|HABP2|Amyloid beta A4 peptide 15
#> 4 VHHPKLVFF <15> AMY25|HABP3|Amyloid beta A4 peptide 15
#> 5 VHHQPLVFF <15> AMY26|HABP4|Amyloid beta A4 peptide 15
#> 6 KKLVFFPED <9> AMY32|HABP10|Amyloid beta A4 peptide 9
#> 7 VHHQEKLVF <16> AMY34|HABP12|Amyloid beta A4 peptide 16
#> 8 VHHQEKLVF <16> AMY35|HABP13|Amyloid beta A4 peptide 16
#> 9 VHHQEKLVF <16> AMY36|HABP14|Amyloid beta A4 peptide 16
#> 10 KKLVFFAED <9> AMY37|HABP15|Amyloid beta A4 peptide 9
#> # ℹ 14 more rows
For citation type:
citation("tidysq")
or use:
Michal Burdukiewicz, Dominik Rafacz, Laura Bakala, Jadwiga Slowik, Weronika Puchala, Filip Pietluch, Katarzyna Sidorczuk, Stefan Roediger and Leon Eyrich Jessen (2021). tidysq: Tidy Processing and Analysis of Biological Sequences. R package version 1.1.3.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.