The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Column Metadata & How tidytlg Sets Up Your Data Using tlgsetup

library(dplyr)
library(tidytlg)

The tlgsetup helper function was created to support generating different column structures for our outputs. This allows us to specify column types once that can be used across multiple outputs. This metadata can be hardcoded as well (please see the code below), or pulled from another source like a dataframe, file or database.

Here we see an example of the column metadata which defines our columns, how to combine columns, column labels and spanning headers across columns.

column_metadata <-
  tibble::tribble(
    ~tbltype, ~coldef, ~decode,                ~span1,
    "type1",  "0",     "Placebo",              "",
    "type1",  "54",    "Low Dose",             "Xanomeline",
    "type1",  "81",    "High Dose",            "Xanomeline",
    "type1",  "54+81", "Total Xanomeline",     ""
  )
column_metadata
tbltypecoldefdecodespan1
type10Placebo
type154Low DoseXanomeline
type181High DoseXanomeline
type154+81Total Xanomeline

In this example, we would summarize Placebo, Xanomeline Low Dose, and Xanomeline High Dose which are already available in the data. The helper function will add the observations to the data for the Total Xanomeline column based off of coldef. So for our adsl data, we will add a spanning header for Xanomeline and a total Xanomeline column which is a combination of the Xanomeline Low Dose and Xanomeline High Dose.

In addition, the helper function will add the factor variable colnbr which is used as our new column summary variable. Note that our column summary variable has been converted to a factor. This is required and allows us to define column order as well as label in one variable.

Let’s read in adsl and check the dimensions.

data("cdisc_adsl")
adsl <- cdisc_adsl %>%
  filter(ITTFL == "Y") %>%
  select(USUBJID, TRT01PN, TRT01P, ITTFL, SEX, RACE, AGE)
glimpse(adsl)
#> Rows: 15
#> Columns: 7
#> $ USUBJID <chr> "01-701-1015", "01-701-1023", "01-701-1047", "01-701-1118", "0…
#> $ TRT01PN <dbl> 0, 0, 0, 0, 0, 54, 54, 54, 54, 54, 81, 81, 81, 81, 81
#> $ TRT01P  <chr> "Placebo", "Placebo", "Placebo", "Placebo", "Placebo", "Xanome…
#> $ ITTFL   <chr> "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y…
#> $ SEX     <chr> "F", "M", "F", "M", "M", "M", "M", "F", "M", "M", "M", "F", "F…
#> $ RACE    <chr> "WHITE", "WHITE", "WHITE", "WHITE", "WHITE", "WHITE", "WHITE",…
#> $ AGE     <dbl> 63, 64, 85, 52, 84, 74, 68, 81, 84, 71, 71, 77, 81, 75, 57
#> [1] "Dimensions prior to the tlgsetup call are 15 rows and 7 columns."

Now let’s pass the adsl data through our tlgsetup function to add observations to support the type1 column structure and check out the dimensions.

setup_table <- tlgsetup(adsl,
                        var = "TRT01PN",
                        column_metadata = column_metadata)
glimpse(setup_table)
#> Rows: 25
#> Columns: 9
#> $ tbltype <chr> "type1", "type1", "type1", "type1", "type1", "type1", "type1",…
#> $ colnbr  <fct> col1, col1, col1, col1, col1, col2, col2, col2, col2, col2, co…
#> $ USUBJID <chr> "01-701-1015", "01-701-1023", "01-701-1047", "01-701-1118", "0…
#> $ TRT01PN <chr> "0", "0", "0", "0", "0", "54", "54", "54", "54", "54", "81", "…
#> $ TRT01P  <chr> "Placebo", "Placebo", "Placebo", "Placebo", "Placebo", "Xanome…
#> $ ITTFL   <chr> "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y…
#> $ SEX     <chr> "F", "M", "F", "M", "M", "M", "M", "F", "M", "M", "M", "F", "F…
#> $ RACE    <chr> "WHITE", "WHITE", "WHITE", "WHITE", "WHITE", "WHITE", "WHITE",…
#> $ AGE     <dbl> 63, 64, 85, 52, 84, 74, 68, 81, 84, 71, 71, 77, 81, 75, 57, 74…
#> [1] "Dimensions after to the rmtsetup call are 25 rows and 9 columns."

Here we see we have added two new variables, colnbr and tbltype, which will now be used as our treatment variable when generating our results.

If we take a look at the observation counts for colnbr, we see the 168 records added to the data support Total Xanomeline as we expected!

setup_table %>%
  group_by(colnbr) %>%
  count()
#> # A tibble: 4 × 2
#> # Groups:   colnbr [4]
#>   colnbr     n
#>   <fct>  <int>
#> 1 col1       5
#> 2 col2       5
#> 3 col3       5
#> 4 col4      10

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.