The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(tip)
# Import the iris dataset
data(iris)
# The first 4 columns are the data whereas
# the 5th column refers to the true labels
<- data.matrix(iris[,c("Sepal.Length",
X "Sepal.Width",
"Petal.Length",
"Petal.Width")])
# Extract the true labels (optional)
# True labels are only necessary for constructing network
# graphs that incorporate the true labels; this is often
# for research.
<- iris[,"Species"]
true_labels
# Compute the distance matrix
<- data.matrix(dist(X))
distance_matrix
# Compute the temperature parameter estiamte
<- 1/median(distance_matrix[upper.tri(distance_matrix)])
temperature
# For each subject, compute the point estimate for the number of similar
# subjects using univariate multiple change point detection (i.e.)
= get_cpt_neighbors(.distance_matrix = distance_matrix)
init_num_neighbors
# Set the number of burn-in iterations in the Gibbs samlper
# A very good result for Iris may be obtained by setting burn <- 1000
<- 5
burn
# Set the number of sampling iterations in the Gibbs sampler
# A very good result for Iris may be obtained by setting samples <- 1000
<- 5
samples
# Set the subject names
<- paste(1:dim(iris)[1])
names_subjects
# Run TIP clustering using only the prior
# --> That is, the likelihood function is constant
<- tip(.data = data.matrix(X),
tip1 .burn = burn,
.samples = samples,
.similarity_matrix = exp(-1.0*temperature*distance_matrix),
.init_num_neighbors = init_num_neighbors,
.likelihood_model = "NIW",
.subject_names = names_subjects,
.num_cores = 1)
#> Bayesian Clustering: Table Invitation Prior Gibbs Sampler
#> burn-in: 5
#> samples: 5
#> Likelihood Model: NIW
#>
|
| | 0%
|
|========= | 12%
|
|================== | 25%
|
|========================== | 38%
|
|=================================== | 50%
|
|============================================ | 62%
|
|==================================================== | 75%
|
|============================================================= | 88%
|
|======================================================================| 100%
# Produce plots for the Bayesian Clustering Model
<- plot(tip1) tip_plots
# View the posterior distribution of the number of clusters
$histogram_posterior_number_of_clusters tip_plots
# View the trace plot with respect to the posterior number of clusters
$trace_plot_posterior_number_of_clusters tip_plots
# Extract posterior cluster assignments using the Posterior Expected Adjusted Rand (PEAR) index
<- mcclust::maxpear(psm = tip1@posterior_similarity_matrix)$cl
cluster_assignments
# If the true labels are available, then show the cluster result via a contigency table
table(data.frame(true_label = true_labels,
cluster_assignment = cluster_assignments))
#> cluster_assignment
#> true_label 1 2 3 4 5
#> setosa 50 0 0 0 0
#> versicolor 0 41 2 4 3
#> virginica 0 13 37 0 0
# Create the one component graph with minimum entropy
<- partition_undirected_graph(.graph_matrix = tip1@posterior_similarity_matrix,
partition_list .num_components = 1,
.step_size = 0.001)
# Associate class labels and colors for the plot
<- c("setosa" = "blue",
class_palette_colors "versicolor" = 'green',
"virginica" = "orange")
# Associate class labels and shapes for the plot
<- c("setosa" = 19,
class_palette_shapes "versicolor" = 18,
"virginica" = 17)
# Visualize the posterior similarity matrix by constructing a graph plot of
# the one-cluster graph. The true labels are used here (below they are not).
ggnet2_network_plot(.matrix_graph = partition_list$partitioned_graph_matrix,
.subject_names = NA,
.subject_class_names = true_labels,
.class_colors = class_palette_colors,
.class_shapes = class_palette_shapes,
.node_size = 2,
.add_node_labels = FALSE)
#> Warning: Duplicated override.aes is ignored.
# If true labels are not available, then construct a network plot
# of the one-cluster graph without any class labels.
# Note: Subject labels may be suppressed using .add_node_labels = FALSE.
ggnet2_network_plot(.matrix_graph = partition_list$partitioned_graph_matrix,
.subject_names = names_subjects,
.node_size = 2,
.add_node_labels = TRUE)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.