The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
In a clinical trial project that uses Bayesian dynamic borrowing via meta-analytic predictive (MAP) priors, ideally a pre-specified weight of the informative component of the MAP prior needs to be determined (Ionan et al. (2023)). Expert elicitation is a way through which expert judgement can be formally considered for statistical inference and decision making and it can be used to determine this weight.
For reviews on expert elicitaton see e.g. Brownstein et al. (2019) and O’Hagan (2019), and for experiences with expert elicitation in drug development see e.g. Dallow et al. (2018).
The Sheffield elicitation framework (SHELF) is an established framework that is used for the conduct of expert elicitation (O’Hagan (2019), Gosling (2018), Best et al. (2020)), and the SHELF package is available to facilitate implementation in R (The Sheffield Elicitation Framework (2019)).
This vignette provides a brief description of how expert elicitation can be used in a Bayesian borrowing analysis using robust MAP priors. It is not a description of the expert elicitation process, it shows how elicited data can be processed. It is based on and closely resembles functions in the SHELF package, but is much more limited, in the sense that it only considered determination of one weight parameter (a variable on the scale [0,1]).
The data in this example are hypothetical data.
Loading the tipmap
package and
set.seed
:
> library(tipmap)
> set.seed(123)
Here, the expert data are assumed to be collected via the ‘roulette method’ (Gosling (2018), Dallow et al. (2018)). The experts are asked to place 10 chips into a grid to create histogram-like data that reflects their preferred weighting. No particular shape of symmetry is needed.
Data from a single expert:
> chips_1exp <- c(1, 3, 4, 2, 0, 0, 0, 0, 0, 0)
> sum(chips_1exp)
# [1] 10
The roulette data are assumed to follow a beta distribution. The
following calculation and fitting of a beta distribution is similar to
an implementation in SHELF::fitdist
and yields identical
results.
Data from a single expert:
> # Compute cumulative probabilities
> (x <- get_cum_probs_1exp(chips_1exp))
# [1] 0.1 0.4 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
> # Compute model inputs
> (y <- get_model_input_1exp(x))
# w cum_probs
# 1 0.1 0.1
# 2 0.2 0.4
# 3 0.3 0.8
# 4 0.4 1.0
> # Fit beta distribution
> (fit_1exp <- fit_beta_1exp(df = y)$par)
# alpha beta
# 4.195173 14.182162
For multiple experts the individual steps are handled by the
fit_beta_mult_exp
-function:
> chips_mult <- rbind(
+ c(1, 3, 4, 2, 0, 0, 0, 0, 0, 0),
+ c(0, 2, 3, 2, 2, 1, 0, 0, 0, 0),
+ c(0, 1, 3, 2, 2, 1, 1, 0, 0, 0),
+ c(1, 3, 3, 2, 1, 0, 0, 0, 0, 0),
+ c(0, 1, 4, 3, 2, 0, 0, 0, 0, 0)
+ )
> beta_fits <- fit_beta_mult_exp(
+ chips_mult = chips_mult
+ )
> beta_fits
# # A tibble: 5 × 4
# alpha beta error convergence
# <dbl> <dbl> <dbl> <lgl>
# 1 4.20 14.2 0.00179 TRUE
# 2 3.29 6.97 0.00136 TRUE
# 3 3.30 5.70 0.00399 TRUE
# 4 2.99 9.25 0.000106 TRUE
# 5 6.90 15.3 0.00136 TRUE
Summary statistics for a single expert:
> (alpha <- fit_1exp[1]); (beta <- fit_1exp[2])
# alpha
# 4.195173
# beta
# 14.18216
>
> # Mean
> (beta_mean <- alpha/(alpha+beta))
# alpha
# 0.2282797
>
> # Standard deviation
> beta_sd <- sqrt( (alpha*beta)/( (alpha+beta)^2 *(alpha+beta+1) ) )
> beta_sd
# alpha
# 0.0953491
>
> # Mean absolute deviation around the mean
> beta_mad_mean <- (2*(alpha^alpha)*(beta^beta))/( beta(alpha, beta) * (alpha+beta)^(alpha+beta+1) )
> beta_mad_mean
# alpha
# 0.07648378
>
> # Mode
> if (alpha > 1 & beta >1) beta_mode <- (alpha-1)/(alpha+beta-2)
> if (alpha > 1 & beta >1) beta_mode <- 0.5
> beta_mode
# [1] 0.5
>
> # Quantiles
> qbeta(p = c(0.001, 0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975, 0.99),
+ shape1 = alpha, shape2 = beta)
# [1] 0.03030170 0.07286831 0.08986138 0.11249422 0.21827787 0.35769286 0.40104115
# [8] 0.43928844 0.48403929
>
> # Samples
> x <- rbeta(n = 10^6, shape1 = alpha, shape2 = beta)
> mean(x)
# [1] 0.228191
> sd(x)
# [1] 0.09536257
Summary statistics for data from multiple experts:
> expert_samples <- draw_beta_mixture_nsamples(
+ n = 10^3,
+ chips_mult = chips_mult
+ )
> summary(expert_samples)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.03643 0.19375 0.27175 0.28619 0.35947 0.75872
> (mean_w <- round(mean(expert_samples), 2))
# [1] 0.29
Mean or median values of the pooled distribution may be used as primary weights of the informative component of the robust MAP prior when pre-specifying the Bayesian analysis.
> # Load libraries
> packages <- c("magrittr", "ggplot2", "tibble", "dplyr")
> invisible(lapply(packages, library, character.only = T))
> # Create matrix
> fits_mat <- as.matrix(beta_fits[,c(1,2)])
> # Wide format
> fit_beta_mult_plot_wide <- tibble::tibble(
+ x = seq(0.001, 0.999, length = 200),
+ Expert1 = dbeta(x, fits_mat[1,1], fits_mat[1,2]),
+ Expert2 = dbeta(x, fits_mat[2,1], fits_mat[2,2]),
+ Expert3 = dbeta(x, fits_mat[3,1], fits_mat[3,2]),
+ Expert4 = dbeta(x, fits_mat[4,1], fits_mat[4,2]),
+ Expert5 = dbeta(x, fits_mat[5,1], fits_mat[5,2])
+ )
> # Long format
> fit_beta_mult_plot_long <- fit_beta_mult_plot_wide %>%
+ tidyr::pivot_longer(
+ !x,
+ names_to = "Expert",
+ values_to = "dens")
> # Plot without linear pool
> fig_betas_1 <- ggplot(
+ data = fit_beta_mult_plot_long,
+ aes(x = x, y = dens, goup = Expert)
+ ) +
+ geom_line(aes(color = Expert)) +
+ ggtitle("Fitted beta distributions") +
+ xlab("Weight") + ylab("Density") +
+ scale_x_continuous(breaks = c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) / 10) +
+ theme_bw()
> print(fig_betas_1)
> # Wide format
> fit_beta_mult_plot_wide2 <- fit_beta_mult_plot_wide %>%
+ mutate(linpool = (Expert1 + Expert2 + Expert3 + Expert4 + Expert5)/5)
> # Long format
> fit_beta_mult_plot_long2 <- fit_beta_mult_plot_wide %>%
+ tidyr::pivot_longer(
+ !x,
+ names_to = "Expert",
+ values_to = "dens")
> # Plot
> fig_betas_2 <- ggplot(
+ data = fit_beta_mult_plot_long2,
+ aes(x = x, y = dens, group = Expert)) +
+ geom_line(aes(color = Expert ) ) +
+ ggtitle("Fitted beta distributions and linear pool") +
+ xlab("Weight") + ylab("Density") +
+ scale_x_continuous(breaks=c(0,1,2,3,4,5,6,7,8,9,10)/10) +
+ theme_bw() +
+ geom_line(data = fit_beta_mult_plot_wide2,
+ aes(x = x, y = linpool, group = 1),
+ linewidth=1)
> print(fig_betas_2)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.