The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Type: Package
Title: Plotting Trade-Off AUC-Dimensionality
Version: 0.1.0
Depends: SuperLearner, R (≥ 3.5)
Description: Perform and Runtime statistical comparisons between models. This package aims at choosing the best model for a particular dataset, regarding its discriminant power and runtime.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Suggests: spelling, testthat (≥ 3.0.0)
Config/testthat/edition: 3
RoxygenNote: 7.3.2
Imports: dplyr, speedglm, magrittr, purrr, rsample, stringr, tibble, tidyr, ROCR, caret, ez, fastDummies, fuzzySim, ggplot2
URL: https://github.com/luisgarcez11/tradeoffaucdim
BugReports: https://github.com/luisgarcez11/tradeoffaucdim/issues
Language: en-US
NeedsCompilation: no
Packaged: 2025-04-29 18:30:19 UTC; luis_
Author: Garcez Luis [aut, cre]
Maintainer: Garcez Luis <luisgarcez1@gmail.com>
Repository: CRAN
Date/Publication: 2025-05-02 09:40:02 UTC

Pipe operator

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

Arguments

lhs

A value or the magrittr placeholder.

rhs

A function call using the magrittr semantics.

Value

The result of calling 'rhs(lhs)'.


Apply Model

Description

Apply model and create column with fit

Usage

apply_model(
  obj,
  models = c("SL.glm", "SL.rpart"),
  test_partition_prop = 0.2,
  perf_measure = "auc"
)

Arguments

obj

object returned from define_indepvars_outcome

models

models to be analyzed

test_partition_prop

test proportion

perf_measure

performance measure

Value

list with fit models and parameters

Examples

apply_model(obj2)


Banana Quality

Description

Banana quality dataset

Usage

bananaquality

Format

An object of class data.frame with 8000 rows and 8 columns.


Banana Quality Subset

Description

Banana quality dataset subset

Usage

bananaquality_sample

Format

An object of class data.frame with 50 rows and 8 columns.


Bootstrap data

Description

Create a list with bootstrap samples

Usage

bootstrap_data(
  data,
  outcome = "Quality",
  indep_vars = c("Size", "Weight", "Sweetness", "Softness", "HarvestTime", "Ripeness",
    "Acidity"),
  n_samples = 50,
  n_maximum_dim = 5
)

Arguments

data

a dataframe to be analyzed

outcome

a string representing the outcome variable

indep_vars

a vector of strings to be considered

n_samples

number of bootstrap samples

n_maximum_dim

maximum number of variables to be considered

Value

list

Examples

bootstrap_data(bananaquality_sample)

Compare test

Description

Performs statistical tests to compare performance and runtime.

Usage

compare_test(obj, x_label_offset = 1, y_label_offset = 10)

Arguments

obj

object returned by plot_curve

x_label_offset

x coordinate to plot p-value

y_label_offset

y coordinate to plot p-value

Value

list with statistical tests performed

Examples

compare_test(obj5)

Define independent variables

Description

Define independent variables to be tested

Usage

define_indepvars(obj, p_in = 0.5, p_out = 0.6)

Arguments

obj

object returned by bootstrap_data

p_in

entry p-value used to determine variable order

p_out

removal p-value used to determine variable order

Value

list

Examples

define_indepvars(obj1)

Example Object returned from bootstrap_data

Description

obj1

Usage

obj1

Format

An object of class list of length 5.


Example Object returned from define_indepvars_outcome

Description

obj2

Usage

obj2

Format

An object of class list of length 7.


Example Object returned from apply_model

Description

obj3

Usage

obj3

Format

An object of class list of length 10.


Example Object returned from summary_statistics

Description

obj4

Usage

obj4

Format

An object of class list of length 11.


Example Object returned from plot_curve

Description

obj5

Usage

obj5

Format

An object of class list of length 15.


Example Object returned from compare_test

Description

obj6

Usage

obj6

Format

An object of class list of length 16.


Plot curve

Description

Return plot features.

Usage

plot_curve(obj)

Arguments

obj

object returned by summary_statistics

Value

list with graphical features

Examples

plot_curve(obj4)

Summary Stats

Description

Return summary statistics

Usage

summary_stats(obj)

Arguments

obj

object returned from apply_model

Value

list with summary statistics and bootstrap confidence intervals

Examples

summary_stats(obj3)

Wrap all pipeline

Description

Wrap all pipeline

Usage

wrapper_aucdim(
  data,
  outcome,
  indep_vars,
  n_samples = 100,
  n_maximum_dim = 5,
  p_in = 0.5,
  p_out = 0.6,
  models = c("SL.glm"),
  test_partition_prop = 0.2,
  perf_measure = "auc",
  x_label_offset = 1,
  y_label_offset = 10
)

Arguments

data

a dataframe to be analyzed

outcome

a string representing the outcome variable

indep_vars

a vector of strings to be considered

n_samples

number of bootstrap samples

n_maximum_dim

maximum number of variables

p_in

entry p-value for choosing variable order

p_out

exclusion p-value for choosing variable order

models

a string representing the models to compare

test_partition_prop

test partition proportion

perf_measure

performance measure to be considered

x_label_offset

x coordinate for plotting

y_label_offset

y coordinate for plotting

Value

a list with the final object

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.