The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Example: data

Thijs Janzen

2024-08-24

Data

The treestats package can rapidly calculate summary statistics on phylogenetic trees, and in this vignette, we demonstrate this on empirical trees. We will make use of family-level pruned trees stemming from the clootl supertree of birds. These were created for the original publication accompanying the treestats paper.

focal_trees <- ape::read.tree(file = "https://raw.githubusercontent.com/thijsjanzen/treestats-scripts/main/datasets/phylogenies/fracced/birds.trees")  # nolint

We can now calculate all summary statistics for all trees:

all_stats <- c()
for (i in seq_along(focal_trees)) {
  focal_stats <- treestats::calc_all_stats(focal_trees[[i]])
  all_stats <- rbind(all_stats, focal_stats)
}
all_stats <- as.data.frame(all_stats)

We can now, for instance, plot the distribution of family sizes in birds:

hist(all_stats$number_of_lineages)

Furthermore, we can make a heatmap of all correlations:

cor.dist <- cor(all_stats)
diag(cor.dist) <- NA
heatmap(cor.dist)

This will generate a distorted image: correlations are not corrected for tree size. We can study this a bit more in detail:

opar <- par()
par(mfrow = c(3, 3))
for (stat in c("area_per_pair", "colless", "eigen_centrality",
               "four_prong", "max_betweenness", "max_width",
               "mntd", "sackin", "wiener")) {
  if (stat != "number_of_lineages") {
    x <- all_stats[, colnames(all_stats) == "number_of_lineages"]
    y <- all_stats[, colnames(all_stats) == stat]
    plot(y ~ x, xlab = "Tree size", ylab = stat, pch = 16)
  }
}

par(opar)
## Warning in par(opar): graphical parameter "cin" cannot be set
## Warning in par(opar): graphical parameter "cra" cannot be set
## Warning in par(opar): graphical parameter "csi" cannot be set
## Warning in par(opar): graphical parameter "cxy" cannot be set
## Warning in par(opar): graphical parameter "din" cannot be set
## Warning in par(opar): graphical parameter "page" cannot be set

To correct for this, we will have to go over the entire correlation matrix.

tree_size <- all_stats[, colnames(all_stats) == "number_of_lineages"]

for (i in seq_len(nrow(cor.dist))) {
  for (j in seq_len(ncol(cor.dist))) {
    stat1 <- rownames(cor.dist)[i]
    stat2 <- colnames(cor.dist)[j]
    x <- all_stats[, colnames(all_stats) == stat1]
    y <- all_stats[, colnames(all_stats) == stat2]

    a1 <- lm(x ~ tree_size)
    a2 <- lm(y ~ tree_size)
    new_cor <- cor(a1$residuals, a2$residuals)
    cor.dist[i, j] <- new_cor
  }
}
diag(cor.dist) <- NA
heatmap(cor.dist)

A nicer way to visualize this is given by the package ppheatmap:

if (requireNamespace("pheatmap")) pheatmap::pheatmap(cor.dist)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.