The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

The triangulr package provides high-performance
triangular distribution functions which includes density function,
distribution function, quantile function, random variate generator,
moment generating function, characteristic function, and expected
shortfall function for the triangular distribution.
You can install the released version of triangulr from
CRAN with:
install.packages("triangulr")And the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("irkaal/triangulr")These are basic examples of using the included functions:
library(triangulr)Using the density function, dtri().
x <- c(0.1, 0.5, 0.9)
dtri(x,
min = 0,
max = 1,
mode = 0.5)
#> [1] 0.4 2.0 0.4
dtri(x,
min = c(0, 0, 0),
max = 1,
mode = 0.5)
#> [1] 0.4 2.0 0.4Using the distribution function, ptri().
q <- c(0.1, 0.5, 0.9)
1 - ptri(q, lower_tail = FALSE)
#> [1] 0.02 0.50 0.98
ptri(q, lower_tail = TRUE)
#> [1] 0.02 0.50 0.98
ptri(q, log_p = TRUE)
#> [1] -3.91202301 -0.69314718 -0.02020271
log(ptri(q, log_p = FALSE))
#> [1] -3.91202301 -0.69314718 -0.02020271Using the quantile function, qtri().
p <- c(0.1, 0.5, 0.9)
qtri(1 - p, lower_tail = FALSE)
#> [1] 0.2236068 0.5000000 0.7763932
qtri(p, lower_tail = TRUE)
#> [1] 0.2236068 0.5000000 0.7763932
qtri(log(p), log_p = TRUE)
#> [1] 0.2236068 0.5000000 0.7763932
qtri(p, log_p = FALSE)
#> [1] 0.2236068 0.5000000 0.7763932Using the random variate generator, rtri().
n <- 3
set.seed(1)
rtri(n,
min = 0,
max = 1,
mode = 0.5)
#> [1] 0.3643547 0.4313490 0.5378601
set.seed(1)
rtri(n,
min = c(0, 0, 0),
max = 1,
mode = 0.5)
#> [1] 0.3643547 0.4313490 0.5378601Using the moment generating function, mgtri().
t <- c(1, 2, 3)
mgtri(t,
min = 0,
max = 1,
mode = 0.5)
#> [1] 1.683357 2.952492 5.387626
mgtri(t,
min = c(0, 0, 0),
max = 1,
mode = 0.5)
#> [1] 1.683357 2.952492 5.387626Using the expected shortfall function, estri().
p <- c(0.1, 0.5, 0.9)
estri(p,
min = 0,
max = 1,
mode = 0.5)
#> [1] 0.1490712 0.3333333 0.4610079
estri(p,
min = c(0, 0, 0),
max = 1,
mode = 0.5)
#> [1] 0.1490712 0.3333333 0.4610079These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.