The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

UDPipe Natural Language Processing - Parallel

Jan Wijffels

2023-01-04

Parallel Annotation

I know your time is precious.

Annotations can take a while if you have quite some text to annotate. Luckily performing text annotation is trivially paralleliseable. In order to gain some of your precious time, the udpipe package integrates with the parallel package which is shipped by R-core. To run annotations in parallel, you can do as follows:

library(udpipe)
data(brussels_reviews)
x <- subset(brussels_reviews, language %in% "fr")
x <- data.frame(doc_id = x$id, text = x$feedback, stringsAsFactors = FALSE)
x <- head(x, n = 75)
dim(x)
[1] 75  2
model <- udpipe_download_model(language = "french")
path <- model$file_model
path
[1] "/tmp/RtmpdWwWR5/Rbuildc4fbe5eb928d5/udpipe/vignettes/french-gsd-ud-2.5-191206.udpipe"
annotation <- udpipe(x, path, parallel.cores = 2)

Don’t forget to save your annotation such that you can load it back in later.

saveRDS(annotation, file = "anno.rds")
annotation <- readRDS(file = "anno.rds")

When to run in parallel?

It only makes sense to run annotation in parallel if you have many CPU cores and have enough data to annotate. As udpipe models are Rcpp pointers to the loaded models on disk which can not be passed on to the parallel processes, each process will load the model again which takes some time next to the internal setup of the parallel backend.

You can gain a speedup similar as the amount of cores you have on your machine. That can be done by using the parallel.cores argument wisely alongside parallel.chunksize argument which indicates the size of the chunks that the text data will be splitted into to perform the annotation (the default of this argument is set to the size of the data / parallel.cores).

annotation <- udpipe(x, path, parallel.cores = 2)
annotation <- udpipe(x, path, parallel.cores = 2, parallel.chunksize = 50)
annotation <- udpipe(x, path, parallel.cores = 1)

The following calls are also possible (pass on a character vector or a pre-tokenised list)

x <- setNames(x$text, x$doc_id)
annotation <- udpipe(x, path, parallel.cores = 2)
x <- split(annotation$token, annotation$doc_id)
annotation <- udpipe(x, path, parallel.cores = 2)

Using other packages allowing parallel computation

Another possibility is to use the future.apply R package. Below is a snippet how such a parallel annotation looks like with that package

library(udpipe)
library(data.table)
library(future.apply)
data(brussels_reviews)
x <- subset(brussels_reviews, language %in% "fr")
x <- data.frame(doc_id = x$id, text = x$feedback, stringsAsFactors = FALSE)
## Download the model
udpipe_download_model(language = "french-gsd", model_dir = getwd())

## Run annotation over 4 CPU cores
plan(multiprocess, workers = 4L)
anno <- split(x, seq(1, nrow(x), by = 50))
anno <- future_lapply(anno, FUN=function(x, ...) udpipe(x, "french-gsd", ...), model_dir = getwd())
anno <- rbindlist(anno)

Enjoy the speed gain.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.