The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
## Loading required package: doParallel
## Loading required package: foreach
## Loading required package: iterators
## Loading required package: parallel
## Loading required package: R6
# Example 1: lm with matrix interface (including factors)
demo_lm_matrix <- function() {
cat("\n=== Example 1: lm with matrix interface ===\n")
lm_matrix <- unifiedml::formula_to_matrix(lm) # Uses generic predict()
# Create data with factor and numeric columns
X <- data.frame(
wt = mtcars$wt,
hp = mtcars$hp,
cyl = factor(mtcars$cyl)
)
y <- mtcars$mpg
weights <- rep(1, nrow(X))
model <- lm_matrix$fit(X, y, weights = weights)
preds <- lm_matrix$predict(model, X[1:5, ])
cat("Predictions:\n")
print(preds)
cat("\nCoefficients:\n")
print(coef(model))
}
# Example 2: glmnet with formula interface (with factors)
demo_glmnet_formula <- function() {
cat("\n=== Example 2: glmnet with formula interface ===\n")
if (!requireNamespace("glmnet", quietly = TRUE)) {
cat("glmnet package not installed, skipping example\n")
return(invisible(NULL))
}
glmnet_formula <- unifiedml::matrix_to_formula(
fit_func = glmnet::glmnet,
predict_func = function(model, newX, ...) {
# Wrapper to provide default s parameter
glmnet::predict.glmnet(model, newx = newX, s = 0.01, ...)
}
)
# Formula with factor - model.matrix will auto-create dummies
model <- glmnet_formula$fit(mpg ~ wt + hp + factor(cyl), data = mtcars)
preds <- glmnet_formula$predict(model, newdata = mtcars[1:5, ])
cat("Predictions:\n")
print(preds)
}
# Example 3: Special characters in column names
demo_special_names <- function() {
cat("\n=== Example 3: Column names with special characters ===\n")
lm_matrix <- unifiedml::formula_to_matrix(lm)
# Create problematic column names
X <- data.frame(
`x-1` = mtcars$wt, # Dash
`a:b` = mtcars$hp, # Colon
`log(x)` = log(mtcars$disp), # Parentheses
check.names = FALSE
)
y <- mtcars$mpg
model <- lm_matrix$fit(X, y)
preds <- lm_matrix$predict(model, X[1:3, ])
cat("Predictions:\n")
print(preds)
cat("\nModel handled special column names correctly!\n")
}
# Run examples (uncomment to test)
demo_lm_matrix()##
## === Example 1: lm with matrix interface ===
## Predictions:
## 1 2 3 4 5
## 21.60851 20.79725 26.31500 19.71558 17.67011
##
## Coefficients:
## (Intercept) wt hp cyl6 cyl8
## 35.84599532 -3.18140405 -0.02311981 -3.35902490 -3.18588444
##
## === Example 2: glmnet with formula interface ===
## Predictions:
## s=0.01
## Mazda RX4 21.65238
## Mazda RX4 Wag 20.83774
## Datsun 710 26.26479
## Hornet 4 Drive 19.75155
## Hornet Sportabout 17.70497
##
## === Example 3: Column names with special characters ===
## Predictions:
## 1 2 3
## 22.92749 22.38846 25.67092
##
## Model handled special column names correctly!
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.