The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

vaccinationimpact

R-CMD-check

The goal of {vaccinationimpact} is to assess the impact of vaccination campaigns using the following estimates:

Installation

You can install the development version of vaccinationimpact from GitHub with:

# install.packages("devtools")
devtools::install_github("Epiconcept-Paris/vaccinationimpact")

Example

We use some toy data to illustrate the usage of the package: weekly coverage, incidence and vaccine effectiveness are provided in the package.

library(vaccinationimpact)
data(coverage_and_incidence_mock_data)
data(ve_mock_data)
coverage <- coverage_and_incidence_mock_data$coverage_data
incidence <- coverage_and_incidence_mock_data$incidence_data
vaccine_effectiveness <- ve_mock_data$ve

NAE

nae <- compute_events_averted_by_vaccination(
  number_of_events = incidence$events,
  cumulative_coverage = coverage$cumulative_coverage,
  vaccine_effectiveness = vaccine_effectiveness
)
nae
#>  [1]  2.285438  8.405426 14.187702 19.150751 22.333578 26.258535 25.277745
#>  [8] 14.479245 14.524775 20.687536  9.940025  5.904505  6.979458  3.795576
#> [15]  4.214308  1.203321  1.917519  3.123184  2.798718  1.489643  0.000000
#> [22]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
#> [29]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
#> [36]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
#> [43]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
#> [50]  0.000000  0.000000  0.000000

NAbE

nabe <- compute_events_avertable_by_increasing_coverage(
  number_of_events = incidence$events,
  cumulative_coverage = coverage$cumulative_coverage,
  vaccine_coverage_increase = 0.1, # 10% increase in final coverage
  vaccine_effectiveness = vaccine_effectiveness
)
nabe$nabe
#>  [1]  2.587606  9.637167 16.574011 22.651941 26.915232 32.599316 31.352360
#>  [8] 17.750085 18.067588 25.959763 12.974325  7.574670  8.970289  4.844898
#> [15]  5.299678  1.593502  2.451064  3.811307  3.564364  1.847972  0.000000
#> [22]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
#> [29]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
#> [36]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
#> [43]  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
#> [50]  0.000000  0.000000  0.000000

NNV

NNV can be estimated using 2 methods: Machado et al. and Tuite and Fisman (see vignette for more details).

Machado et al. method

sample_size <- 1234

nnv_machado <- compute_number_needed_to_vaccinate_machado(
  number_of_events = incidence$events,
  number_of_events_averted = nae,
  population_size = sample_size,
  vaccine_effectiveness = vaccine_effectiveness
)
nnv_machado
#>  [1]  41.12997  29.50475  26.92473  27.41407  29.01461  27.30541  30.97586
#>  [8]  58.08314  60.58614  43.89116  93.86294 160.55538 137.54650 255.03374
#> [15] 230.88015 812.75083 511.59870 314.74289 351.58960 661.23225        NA
#> [22]        NA        NA        NA        NA        NA        NA        NA
#> [29]        NA        NA        NA        NA        NA        NA        NA
#> [36]        NA        NA        NA        NA        NA        NA        NA
#> [43]        NA        NA        NA        NA        NA        NA        NA
#> [50]        NA        NA        NA

Tuite and Fisman method

nnv_tuite_fisman <- compute_number_needed_to_vaccinate_tuite_fisman(
  number_of_vaccinated = cumsum(coverage$number_of_vaccinated),
  number_of_events_averted = nae
)
nnv_tuite_fisman
#>  [1]  41.12997  29.50475  26.92473  27.41407  29.01461  27.30541  30.97586
#>  [8]  58.08314  60.58614  43.89116  93.86294 160.55538 137.54650 255.03374
#> [15] 230.88015 812.75083 511.59870 314.74289 351.58960 661.23225        NA
#> [22]        NA        NA        NA        NA        NA        NA        NA
#> [29]        NA        NA        NA        NA        NA        NA        NA
#> [36]        NA        NA        NA        NA        NA        NA        NA
#> [43]        NA        NA        NA        NA        NA        NA        NA
#> [50]        NA        NA        NA

More information can be found in the vignette.

Note

This package was developed to conduct an impact study on COVID-19 vaccination as part of the VEBIS project funded by the ECDC.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.