Type: | Package |
Title: | Interface to the 'ValidMind' Platform |
Version: | 0.1.2 |
Maintainer: | Andres Rodriguez <andres@validmind.ai> |
Description: | Deploy, execute, and analyze the results of models hosted on the 'ValidMind' platform https://validmind.com. This package interfaces with the 'Python' client library in order to allow advanced diagnostics and insight into trained models all from an 'R' environment. |
License: | AGPL-3 |
Encoding: | UTF-8 |
URL: | https://github.com/validmind/developer-framework |
BugReports: | https://github.com/validmind/developer-framework/issues |
RoxygenNote: | 7.3.2 |
Imports: | glue, reticulate, dplyr, plotly, htmltools, rmarkdown, DT, base64enc |
NeedsCompilation: | no |
Packaged: | 2024-11-07 18:41:40 UTC; erichare |
Author: | Andres Rodriguez [aut, cre, cph] |
Repository: | CRAN |
Date/Publication: | 2024-11-07 19:00:02 UTC |
Build an R Plotly figure from a JSON representation
Description
Build an R Plotly figure from a JSON representation
Usage
build_r_plotly(plotly_figure)
Arguments
plotly_figure |
A nested list containing plotly elements |
Value
An R Plotly object derived from the JSON representation
Produce RMarkdown-compatible output of all results
Description
Produce RMarkdown-compatible output of all results
Usage
display_report(processed_results)
Arguments
processed_results |
A list of processed result objects |
Value
A formatted list of RMarkdown widgets
Examples
## Not run:
vm_dataset = vm_r$init_dataset(
dataset=data,
target_column="Exited",
class_labels=list("0" = "Did not exit", "1" = "Exited")
)
tabular_suite_results <- vm_r$run_test_suite("tabular_dataset", dataset=vm_dataset)
processed_results <- process_result(tabular_suite_results)
all_widgets <- display_report(processed_results)
for (widget in all_widgets) {
print(widget)
}
## End(Not run)
Print a summary table of the ValidMind results
Description
Print a summary table of the ValidMind results
Usage
print_summary_tables(result_summary)
Arguments
result_summary |
A summary of the results |
Value
A data frame containing the summary of the ValidMind results
Process a set of ValidMind results into parseable data
Description
Process a set of ValidMind results into parseable data
Usage
process_result(results)
Arguments
results |
A list of ValidMind result objects |
Value
A nested list of ValidMind results (dataframes, plotly plots, and matplotlib plots)
Examples
## Not run:
vm_dataset = vm_r$init_dataset(
dataset=data,
target_column="Exited",
class_labels=list("0" = "Did not exit", "1" = "Exited")
)
tabular_suite_results <- vm_r$run_test_suite("tabular_dataset", dataset=vm_dataset)
processed_results <- process_result(tabular_suite_results)
processed_results
## End(Not run)
Register a Custom Test Function in ValidMind
Description
Registers an R function as a custom test within the ValidMind testing framework, allowing it to be used as a custom metric for model validation.
Usage
register_custom_test(
func,
test_id = NULL,
description = NULL,
required_inputs = NULL
)
Arguments
func |
An R function to be registered as a custom test. |
test_id |
A unique identifier for the test. If |
description |
A description of the test. If |
required_inputs |
A character vector specifying the required inputs for the test. If |
Details
The provided R function is converted into a Python callable using r_to_py
.
A Python class is then defined, inheriting from ValidMind's Metric
class, which wraps this callable.
This custom test is registered within ValidMind's test store and can be used in the framework for model validation purposes.
Value
The test store object containing the newly registered custom test.
See Also
r_to_py
, import_main
, py_run_string
Examples
## Not run:
# Define a custom test function in R
my_custom_metric <- function(predictions, targets) {
# Custom metric logic
mean(abs(predictions - targets))
}
# Register the custom test
register_custom_test(
func = my_custom_metric,
test_id = "custom.mae",
description = "Custom Mean Absolute Error",
required_inputs = c("predictions", "targets")
)
## End(Not run)
Run a Custom Test using the ValidMind Framework
Description
This function runs a custom test using the ValidMind framework through Python's 'validmind.vm_models'. It retrieves a custom test by 'test_id', executes it with the provided 'inputs', and optionally displays the result. The result is also logged.
Usage
run_custom_test(test_id, inputs, test_registry, show = FALSE)
Arguments
test_id |
A string representing the ID of the custom test to run. |
inputs |
A list of inputs required for the custom test. |
test_registry |
A reference to the test register object which provides the custom test class. |
show |
A logical value. If TRUE, the result will be displayed. Defaults to FALSE. |
Value
An object representing the result of the test, with an additional log function.
Examples
## Not run:
result <- run_custom_test("test123", my_inputs, test_registry, show = TRUE)
## End(Not run)
Save an R model to a temporary file
Description
This function saves a given R model object to a randomly named '.RData' file in the '/tmp/' directory. The file is saved with a unique name generated using random letters.
Usage
save_model(model)
Arguments
model |
The R model object to be saved. |
Value
A string representing the full file path to the saved '.RData' file.
Examples
model <- lm(mpg ~ cyl, data = mtcars)
file_path <- save_model(model)
Provide a summarization of a single metric result
Description
Provide a summarization of a single metric result
Usage
summarize_metric_result(result)
Arguments
result |
The ValidMind result object |
Value
A list containing the summary of the ValidMind results
Provide a summarization of a single result (test or metric)
Description
Provide a summarization of a single result (test or metric)
Usage
summarize_result(result)
Arguments
result |
The ValidMind result object |
Value
Based on the type of 'result', either A list containing the summary of the ValidMind results, or a list containing the summary of the ValidMind results
Provide a summarization of a single test result
Description
Provide a summarization of a single test result
Usage
summarize_test_result(result)
Arguments
result |
The ValidMind result object |
Value
A list containing the summary of the ValidMind test results
Retrieve a validmind (vm) connection object using reticulate
Description
Retrieve a validmind (vm) connection object using reticulate
Usage
vm(
api_key,
api_secret,
model,
python_version,
api_host = "http://localhost:3000/api/v1/tracking"
)
Arguments
api_key |
The ValidMind API key |
api_secret |
The ValidMind API secret |
model |
The ValidMind model |
python_version |
The Python Version to use |
api_host |
The ValidMind host, defaulting to local |
Value
A validmind connection object, obtained from 'reticulate', which orchestrates the connection to the ValidMind API
Examples
## Not run:
vm_r <- vm(
api_key="<your_api_key_here>",
api_secret="<your_api_secret_here>",
model="<your_model_id_here>",
python_version=python_version,
api_host="https://api.dev.vm.validmind.ai/api/v1/tracking"
)
## End(Not run)