The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
External vector of probabilities can be used as base for contour and prediction plots. For example, one can use other algorithms, packages or other external sources to compute these probabilities and pass them through the ‘proba’ vector. Besides that, although basic function settings rely on fit and not on out-of-sample prediction, train and test predictions can also be represented.
In the next example, data is splitted into train and test. Test predictions are obtained with model built with train data, and then incorporated to famdcontour function through ‘proba’ vector. Plot for test points is shown.
If one wants to apply this procedure, caution is necessary:
In the example, test data (same number of rows as proba) is passed to the famdcontour function.
This setting can be altered using cross validation, for example, with caret package, using all data.
library(visualpred)
dataf<-na.omit(Hmda)
listconti<-c("dir", "lvr", "ccs","uria")
listclass<-c("pbcr", "dmi", "self")
vardep<-c("deny")
dataf<-dataf[,c(listconti,listclass,vardep)]
set.seed(123)
train_ind <- sample(seq_len(nrow(Hmda)), size = 1700)
train <- dataf[train_ind, ]
test <- dataf[-train_ind, ]
formu<-paste("factor(",vardep,")~.")
model <- glm(formula(formu),family=binomial(link='logit'),data=train)
proba<- predict(model,test,type="response")
result<-famdcontour(dataf=test,listconti=listconti,listclass=listclass,vardep=vardep,
proba=proba,title="Test Contour under GLM",title2=" ",selec=0,modelo="glm",classvar=0)
result[[2]]
library(randomForest)
model <- randomForest(formula(formu),data=train,mtry=4,nodesize=10,ntree=300)
proba <- predict(model, test,type="prob")
proba<-as.vector(proba[,2])
result<-famdcontour(dataf=test,listconti=listconti,listclass=listclass,vardep=vardep,
proba=proba,title="Test Contour under Random Forest",title2=" ",Dime1="Dim.1",Dime2="Dim.2",
selec=0,modelo="glm",classvar=0)
result[[2]]
Dependent variable colors can be set in a vector named depcol where the first color corresponds to the majority class. Color schema for variables and categories can also be set in a vector named listacol. In this example dependent variable colors are changed. Also, title schema can be overwritten with usual ggplot settings.
library(ggplot2)
library(visualpred)
dataf<-na.omit(Hmda)
listconti<-c("dir", "lvr", "ccs","uria")
listclass<-c("pbcr", "dmi", "self")
vardep<-c("deny")
result<-famdcontour(dataf=dataf,listconti=listconti,listclass=listclass,vardep=vardep,
title="",title2=" ",selec=0,modelo="glm",classvar=0,depcol=c("gold2","deeppink3"))
result[[2]]+
ggtitle("Hmda data",subtitle="2380 obs")+theme(
plot.title = element_text(hjust=0.5,color="darkorchid"),
plot.subtitle= element_text(hjust=0.5,color="violet")
)
Plot over other Dimensions built by famd or mca algorithms is allowed, as in the next example.
result<-famdcontour(dataf=dataf,listconti=listconti,listclass=listclass,vardep=vardep,
title="Dim.1 and Dim.2",title2=" ",Dime1="Dim.1",Dime2="Dim.2",
selec=0,modelo="glm",classvar=0)
result[[4]]
result[[5]]
result<-famdcontour(dataf=dataf,listconti=listconti,listclass=listclass,vardep=vardep,
title="Dim.3 and Dim.4",title2=" ",Dime1="Dim.3",Dime2="Dim.4",
selec=0,modelo="glm",classvar=0)
result[[4]]
result[[5]]
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.