The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Package visualpred can help to visualize at a glance the behaviour of different machine learning algorithms. As returned values are often ggplot objects, ggplot options can be used to remove legends. A title is given, and title2 is set to two blank spaces .
Next plot shows the behaviour of different algorithms for classification. Although svm seems to be most accurate in this example, all algorithm parameters need some tuning.
require(egg)
library(visualpred)
dataf<-spiral
listconti<-c("x1","x2")
listclass<-c("")
vardep<-"clase"
result<-famdcontour(dataf=spiral,listconti=listconti,listclass=listclass,vardep=vardep,
title="GLM",title2=" ",selec=0,modelo="glm",classvar=0)
g1<-result[[2]]+theme(legend.position = "none")
result<-famdcontour(dataf=spiral,listconti=listconti,listclass=listclass,vardep=vardep,
title="NNET",title2=" ",selec=0,modelo="nnet",classvar=0)
g2<-result[[2]]+theme(legend.position = "none")
result<-famdcontour(dataf=spiral,listconti=listconti,listclass=listclass,vardep=vardep,
title="RF",title2=" ",selec=0,modelo="rf",classvar=0)
g3<-result[[2]]+theme(legend.position = "none")
result<-famdcontour(dataf=spiral,listconti=listconti,listclass=listclass,vardep=vardep,
title="GBM",title2=" ",selec=0,modelo="gbm",classvar=0)
g4<-result[[2]]+theme(legend.position = "none")
result<-famdcontour(dataf=spiral,listconti=listconti,listclass=listclass,vardep=vardep,title="SVM",
title2=" ",selec=0,modelo="svm",classvar=0)
g5<-result[[2]]+theme(legend.position = "none")
ggarrange(g1,g2,g3,g4,g5,ncol =2,nrow=3)
Next plot illustrates the effects of different tuning settings for a neural network modeling of the spiral dataset.
Next example applies the same schema to a real dataset. With default parameter values, SVM seems to overfit; other values are tried to avoid it but without success for this algorithm.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.